31 research outputs found

    Ribosomenbiogenese in Archaeen

    Get PDF
    The ribosome is a universally conserved macromolecular machine responsible for the translation of mRNAs into proteins. The synthesis of ribosomes is a crucial task that has been well characterized in bacteria and eukarya, but not in archaea. Here we summarize our current understanding of ribosome biogenesis in archaea and how it might help to further answer evolutionary questions

    Nanopore sequencing of RNA and cDNA molecules in Escherichia coli

    Get PDF
    High-throughput sequencing dramatically changed our view of transcriptome architectures and allowed for ground-breaking discoveries in RNA biology. Recently, sequencing of full-length transcripts based on the single-molecule sequencing platform from Oxford Nanopore Technologies (ONT) was introduced and is widely used to sequence eukaryotic and viral RNAs. However, experimental approaches implementing this technique for prokaryotic transcriptomes remain scarce. Here, we present an experimental and bioinformatic workflow for ONT RNA-seq in the bacterial model organism Escherichia coli, which can be applied to any microorganism. Our study highlights critical steps of library preparation and computational analysis and compares the results to gold standards in the field. Furthermore, we comprehensively evaluate the applicability and advantages of different ONT-based RNA sequencing protocols, including direct RNA, direct cDNA, and PCR-cDNA. We find that (PCR)-cDNA-seq offers improved yield and accuracy compared to direct RNA sequencing. Notably, (PCR)-cDNA-seq is suitable for quantitative measurements and can be readily used for simultaneous and accurate detection of transcript 5′ and 3′ boundaries, analysis of transcriptional units, and transcriptional heterogeneity. In summary, based on our comprehensive study, we show nanopore RNA-seq to be a ready-to-use tool allowing rapid, cost-effective, and accurate annotation of multiple transcriptomic features. Thereby nanopore RNA-seq holds the potential to become a valuable alternative method for RNA analysis in prokaryotes

    Toward Time-Resolved Analysis of RNA Metabolism in Archaea Using 4-Thiouracil

    Get PDF
    Archaea are widespread organisms colonizing almost every habitat on Earth. However, the molecular biology of archaea still remains relatively uncharacterized. RNA metabolism is a central cellular process, which has been extensively analyzed in both bacteria and eukarya. In contrast, analysis of RNA metabolism dynamic in archaea has been limited to date. To facilitate analysis of the RNA metabolism dynamic at a system-wide scale in archaea, we have established non-radioactive pulse labeling of RNA, using the nucleotide analog 4-thiouracil (4TU) in two commonly used model archaea: the halophile Euryarchaeota Haloferax volcanii, and the thermo-acidophile Crenarchaeota Sulfolobus acidocaldarius. In this work, we show that 4TU pulse labeling can be efficiently performed in these two organisms in a dose-and time-dependent manner. In addition, our results suggest that uracil prototrophy had no critical impact on the overall 4TU incorporation in RNA molecules. Accordingly, our work suggests that 4TU incorporation can be widely performed in archaea, thereby expanding the molecular toolkit to analyze archaeal gene expression network dynamic in unprecedented detail

    Nanopore-based RNA sequencing deciphers the formation, processing, and modification steps of rRNA intermediates in archaea

    Get PDF
    Ribosomal RNA (rRNA) maturation in archaea is a complex multistep process that requires well-defined endo- and exoribonuclease activities to generate fully mature linear rRNAs. However, technical challenges prevented detailed mapping of rRNA processing steps and a systematic analysis of rRNA maturation pathways across the tree of life. In this study, we used long-read (PCR)-cDNA and direct RNA nanopore-based sequencing to study rRNA maturation in three archaeal model organisms, namely the Euryarchaea Haloferax volcanii and Pyrococcus furiosus and the Crenarchaeon Sulfolobus acidocaldarius. Compared to standard short-read protocols, nanopore sequencing facilitates simultaneous readout of 5′- and 3′-positions, which is required for the classification of rRNA processing intermediates. More specifically, we (i) accurately detect and describe rRNA maturation stages by analysis of terminal read positions of cDNA reads and thereupon (ii) explore the stage-dependent installation of the KsgA-mediated dimethylations in H. volcanii using base-calling and signal characteristics of direct RNA reads. Due to the single-molecule sequencing capacity of nanopore sequencing, we could detect hitherto unknown intermediates with high confidence, revealing details about the maturation of archaea-specific circular rRNA intermediates. Taken together, our study delineates common principles and unique features of rRNA processing in euryarchaeal and crenarchaeal representatives, thereby significantly expanding our understanding of rRNA maturation pathways in archaea

    Impact of two neighbouring ribosomal protein clusters on biogenesis factor binding and assembly of yeast late small ribosomal subunit precursors

    Get PDF
    Many of the small ribosomal subunit proteins are required for the stabilisation of late small ribosomal subunit (SSU) precursors and for final SSU rRNA processing in S. cerevisiae. Among them are ribosomal proteins (r-proteins) which form a protein cluster around rpS0 (uS2) at the "neck" of the SSU (S0-cluster) and others forming a nearby protein cluster around rpS3 (uS3) at the SSU "beak". Here we applied semi-quantitative proteomics together with complementary biochemical approaches to study how incomplete assembly of these two r-protein clusters affects binding and release of SSU maturation factors and assembly of other r-proteins in late SSU precursors in S. cerevisiae. For each of the two clusters specific impairment of the local r-protein assembly state was observed in Rio2 associated SSU precursors. Besides, cluster-specific effects on the association of biogenesis factors were detected. These suggested a role of S0-cluster formation for the efficient release of the two nuclear export factors Rrp12 and Slx9 from SSU precursors and for the correct incorporation of the late acting biogenesis factor Rio2. Based on our and on previous results we propose the existence of at least two different r-protein assembly checkpoints during late SSU maturation in S. cerevisiae. We discuss in the light of recent SSU precursor structure models how r-protein assembly states might be sensed by biogenesis factors at the S0-cluster checkpoint

    Insights into the evolutionary conserved regulation of Rio ATPase activity

    Get PDF
    Department of Biochemistry III ‘House of the Ribosome’ and by the DFG Collaborative Research Center [SFB960-AP1] ‘Ribosome formation: principles of RNP biogenesis and control of their function’ (to S.F.-C.).; Work in the MacNeill laboratory was funded by Forskningsrådet for Natur og Univers (FNU) [sagsnr. 272-05-0446]; Scottish Universities Life Sciences Alliance (SULSA); Research in the Medenbach laboratory is supported by the Bavarian Research Network for Molecular Biosystems (BioSysNet); German Research Foundation (DFG) [ME4238/1-1]; DFG Collaborative Research Center [SFB960-B11] ‘Ribosome formation: principles of RNP biogenesis and control of their function’; German Federal Ministry of Education and Research (BMBF) within the framework of the e:Med research and funding concept [01ZX1401D]; Work in the Siebers laboratory was funded by a grant from the German Science Foundation (DFG) [SI642/10-1] from the Federal Ministry of Education and Research (BMBF) [0316188A]; Work in the LaRonde laboratory was funded by National Science Foundation [MCB0953493]; Publishing of this work was supported by the German Research Foundation (DFG) within the funding program Open Access Publishing. Funding for open access charge: DFG—Open Access program.Eukaryotic ribosome biogenesis is a complex dynamic process which requires the action of numerous ribosome assembly factors. Among them, the eukaryotic Rio protein family members (Rio1, Rio2 and Rio3) belong to an ancient conserved atypical protein kinase/ ATPase family required for the maturation of the small ribosomal subunit (SSU). Recent structure-function analyses suggested an ATPase-dependent role of the Rio proteins to regulate their dynamic association with the nascent pre-SSU. However, the evolutionary origin of this feature and the detailed molecular mechanism that allows controlled activation of the catalytic activity remained to be determined. In this work we provide functional evidence showing a conserved role of the archaeal Rio proteins for the synthesis of the SSU in archaea. Moreover, we unravel a conserved RNA-dependent regulation of the Rio ATPases, which in the case of Rio2 involves, at least, helix 30 of the SSU rRNA and the P-loop lysine within the shared RIO domain. Together, our study suggests a ribosomal RNA-mediated regulatory mechanism enabling the appropriate stimulation of Rio2 catalytic activity and subsequent release of Rio2 from the nascent pre- 40S particle. Based on our findings we propose a unified release mechanism for the Rio proteins.Publisher PDFPeer reviewe

    Conformational proofreading of distant 40S ribosomal subunit maturation events by a long-range communication mechanism

    Get PDF
    Eukaryotic ribosomes are synthesized in a hierarchical process driven by a plethora of assembly factors, but how maturation events at physically distant sites on pre- ribosomes are coordinated is poorly understood. Using functional analyses and cryo- EM, we show that ribosomal protein Rps20 orchestrates communication between two multi-step maturation events across the pre-40S subunit. Our study reveals that during pre-40S maturation, formation of essential contacts between Rps20 and Rps3 permits assembly factor Ltv1 to recruit the Hrr25 kinase, thereby promoting Ltv1 phosphorylation. In parallel, a deeply buried Rps20 loop reaches to the opposite pre- 40S side, where it stimulates Rio2 ATPase activity. Both cascades converge to the final maturation steps releasing Rio2 and phosphorylated Ltv1. We propose that conformational proofreading exerted via Rps20 constitutes a checkpoint permitting assembly factor release and progression of pre-40S maturation only after completion of all earlier maturation steps

    The dark side of the ribosome life cycle

    No full text
    Thanks to genetics, biochemistry, and structural biology many features of the ribosome ' s life cycles in models of bacteria, eukaryotes, and some organelles have been revealed to near-atomic details. Collectively, these studies have provided a very detailed understanding of what are now well-established prototypes for ribosome biogenesis and function as viewed from a 'classical' model organisms perspective. However, very important challenges remain ahead to explore the functional and structural diversity of both ribosome biogenesis and function across the biological diversity on earth. Particularly, the 'third domain of life', the archaea, and also many non-model bacterial and eukaryotic organisms have been comparatively neglected. Importantly, characterizing these additional biological systems will not only offer a yet untapped window to enlighten the evolution of ribosome biogenesis and function but will also help to unravel fundamental principles of molecular adaptation of these central cellular processes

    Analysis of the in vivo functions and assembly pathway of small subunit ribosomal proteins in Saccharomyces cerevisiae

    Get PDF
    In eukaryotes, in vivo formation of the two ribosomal subunits from four ribosomal RNAs (rRNAs) and approximately 80 ribosomal proteins (r-proteins) involves more than 150 non-ribosomal proteins and around 100 small non-coding RNAs. Ribosome biogenesis is temporally and spatially organised within three different cellular compartments: the nucleolus, nucleoplasm and cytoplasm. Despite the rising knowledge about ribosome function and structure and how ribosomal subunits assemble in vitro in bacteria, the in vivo role of many ribosomal proteins remains obscure both in pro- and eukaryotes. This work describes the systematic analysis of yeast small subunit r-proteins (rpS) in vivo function(s) in small ribosomal subunit (SSU) maturation and assembly. The results described herein demonstrate that most eukaryotic r-proteins fulfill different roles in ribosome biogenesis, making them indispensable for growth. Different r-proteins control distinct steps of nuclear and cytoplasmic pre-18S rRNA processing and, thus, ensure that only properly assembled ribosomes become engaged in translation. Furthermore several r-proteins are required for efficient nuclear export of pre-18S rRNA, suggesting that they form an interaction platform with the export machinery. In addition, in vivo analysis of rpS assembly suggests that the pre-rRNA � rpS interactions are stabilised in the course of the SSU maturation process. Finally, analysis of rpS assembly status in two mutants in which pre-SSU nuclear export is blocked (crm1, rps5) and one in which export is strongly delayed (rps15) show that key aspects of the in vivo assembly of eukaryotic r-proteins into distinct structural parts of the SSU are similar to the in vitro assembly pathway of their prokaryotic counterparts. Interestingly, the establishment of a stable assembly intermediate of the eukaryotic SSU-body, but not of the SSU-head, is closely linked to early rRNA processing events. On the other hand, formation of assembly intermediates of the head controls efficient nuclear export of the SSU and cytoplasmic pre-rRNA maturation steps. Therefore the formation of certain assembly intermediates is required to allow the rRNA processing steps or the export of the SSU to take place. The above intermediates can also contribute substantially to the quality control of the maturing subunit

    Ribosome Biogenesis in Archaea

    Get PDF
    Making ribosomes is a major cellular process essential for the maintenance of functional ribosome homeostasis and to ensure appropriate gene expression. Strikingly, although ribosomes are universally conserved ribonucleoprotein complexes decoding the genetic information contained in messenger RNAs into proteins, their biogenesis shows an intriguing degree of variability across the tree of life. In this review, we summarize our knowledge on the least understood ribosome biogenesis pathway: the archaeal one. Furthermore, we highlight some evolutionary conserved and divergent molecular features of making ribosomes across the tree of life
    corecore