1,148 research outputs found

    The Spatial Distribution of Absolute Skeletal Muscle Deoxygenation During Ramp-Incremental Exercise Is Not Influenced by Hypoxia.

    Get PDF
    Time-resolved near-infrared spectroscopy (TRS-NIRS) allows absolute quantitation of deoxygenated haemoglobin and myoglobin concentration ([HHb]) in skeletal muscle. We recently showed that the spatial distribution of peak [HHb] within the quadriceps during moderate-intensity cycling is reduced with progressive hypoxia and this is associated with impaired aerobic energy provision. We therefore aimed to determine whether reduced spatial distribution of skeletal muscle [HHb] was associated with impaired aerobic energy transfer during exhaustive ramp-incremental exercise in hypoxia. Seven healthy men performed ramp-incremental cycle exercise (20 W/min) to exhaustion at 3 fractional inspired O2 concentrations (FIO2): 0.21, 0.16, 0.12. Pulmonary O2 uptake (VO₂) was measured using a flow meter and gas analyser system. Lactate threshold (LT) was estimated non-invasively. Absolute muscle deoxygenation was quantified by multichannel TRS-NIRS from the rectus femoris and vastus lateralis (proximal and distal regions). VO₂peak and LT were progressively reduced (p < 0.05) with hypoxia. There was a significant effect (p < 0.05) of FIO2 on [HHb] at baseline, LT, and peak. However the spatial variance of [HHb] was not different between FIO2 conditions. Peak total Hb ([Hbtot]) was significantly reduced between FIO2 conditions (p < 0.001). There was no association between reductions in the spatial distribution of skeletal muscle [HHb] and indices of aerobic energy transfer during ramp-incremental exercise in hypoxia. While regional [HHb] quantified by TRS-NIRS at exhaustion was greater in hypoxia, the spatial distribution of [HHb] was unaffected. Interestingly, peak [Hbtot] was reduced at the tolerable limit in hypoxia implying a vasodilatory reserve may exist in conditions with reduced FIO2

    The radial arrangement of the human chromosome 7 in the lymphocyte cell nucleus is associated with chromosomal band gene density

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ Springer-Verlag 2008.In the nuclei of human lymphocytes, chromosome territories are distributed according to the average gene density of each chromosome. However, chromosomes are very heterogeneous in size and base composition, and can contain both very gene-dense and very gene-poor regions. Thus, a precise analysis of chromosome organisation in the nuclei should consider also the distribution of DNA belonging to the chromosomal bands in each chromosome. To improve our understanding of the chromatin organisation, we localised chromosome 7 DNA regions, endowed with different gene densities, in the nuclei of human lymphocytes. Our results showed that this chromosome in cell nuclei is arranged radially with the gene-dense/GC-richest regions exposed towards the nuclear interior and the gene-poorest/GC-poorest ones located at the nuclear periphery. Moreover, we found that chromatin fibres from the 7p22.3 and the 7q22.1 bands are not confined to the territory of the bulk of this chromosome, protruding towards the inner part of the nucleus. Overall, our work demonstrates the radial arrangement of the territory of chromosome 7 in the lymphocyte nucleus and confirms that human genes occupy specific radial positions, presumably to enhance intra- and inter-chromosomal interaction among loci displaying a similar expression pattern, and/or similar replication timing

    Toward Understanding Massive Star Formation

    Full text link
    Although fundamental for astrophysics, the processes that produce massive stars are not well understood. Large distances, high extinction, and short timescales of critical evolutionary phases make observations of these processes challenging. Lacking good observational guidance, theoretical models have remained controversial. This review offers a basic description of the collapse of a massive molecular core and a critical discussion of the three competing concepts of massive star formation: - monolithic collapse in isolated cores - competitive accretion in a protocluster environment - stellar collisions and mergers in very dense systems We also review the observed outflows, multiplicity, and clustering properties of massive stars, the upper initial mass function and the upper mass limit. We conclude that high-mass star formation is not merely a scaled-up version of low-mass star formation with higher accretion rates, but partly a mechanism of its own, primarily owing to the role of stellar mass and radiation pressure in controlling the dynamics.Comment: 139 pages, 18 figures, 5 tables, glossar

    Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair.

    Get PDF
    Repair of double strand DNA breaks (DSBs) can result in gene disruption or gene modification via homology directed repair (HDR) from donor DNA. Altering cellular responses to DSBs may rebalance editing outcomes towards HDR and away from other repair outcomes. Here, we utilize a pooled CRISPR screen to define host cell involvement in HDR between a Cas9 DSB and a plasmid double stranded donor DNA (dsDonor). We find that the Fanconi Anemia (FA) pathway is required for dsDonor HDR and that other genes act to repress HDR. Small molecule inhibition of one of these repressors, CDC7, by XL413 and other inhibitors increases the efficiency of HDR by up to 3.5 fold in many contexts, including primary T cells. XL413 stimulates HDR during a reversible slowing of S-phase that is unexplored for Cas9-induced HDR. We anticipate that XL413 and other such rationally developed inhibitors will be useful tools for gene modification

    Genetic Covariance Structure of Reading, Intelligence and Memory in Children

    Get PDF
    This study investigates the genetic relationship among reading performance, IQ, verbal and visuospatial working memory (WM) and short-term memory (STM) in a sample of 112, 9-year-old twin pairs and their older siblings. The relationship between reading performance and the other traits was explained by a common genetic factor for reading performance, IQ, WM and STM and a genetic factor that only influenced reading performance and verbal memory. Genetic variation explained 83% of the variation in reading performance; most of this genetic variance was explained by variation in IQ and memory performance. We hypothesize, based on these results, that children with reading problems possibly can be divided into three groups: (1) children low in IQ and with reading problems; (2) children with average IQ but a STM deficit and with reading problems; (3) children with low IQ and STM deficits; this group may experience more reading problems than the other two

    Microbes Bind Complement Inhibitor Factor H via a Common Site

    Get PDF
    To cause infections microbes need to evade host defense systems, one of these being the evolutionarily old and important arm of innate immunity, the alternative pathway of complement. It can attack all kinds of targets and is tightly controlled in plasma and on host cells by plasma complement regulator factor H (FH). FH binds simultaneously to host cell surface structures such as heparin or glycosaminoglycans via domain 20 and to the main complement opsonin C3b via domain 19. Many pathogenic microbes protect themselves from complement by recruiting host FH. We analyzed how and why different microbes bind FH via domains 19–20 (FH19-20). We used a selection of FH19-20 point mutants to reveal the binding sites of several microbial proteins and whole microbes (Haemophilus influenzae, Bordetella pertussis, Pseudomonas aeruginosa, Streptococcus pneumonia, Candida albicans, Borrelia burgdorferi, and Borrelia hermsii). We show that all studied microbes use the same binding region located on one side of domain 20. Binding of FH to the microbial proteins was inhibited with heparin showing that the common microbial binding site overlaps with the heparin site needed for efficient binding of FH to host cells. Surprisingly, the microbial proteins enhanced binding of FH19-20 to C3b and down-regulation of complement activation. We show that this is caused by formation of a tripartite complex between the microbial protein, FH, and C3b. In this study we reveal that seven microbes representing different phyla utilize a common binding site on the domain 20 of FH for complement evasion. Binding via this site not only mimics the glycosaminoglycans of the host cells, but also enhances function of FH on the microbial surfaces via the novel mechanism of tripartite complex formation. This is a unique example of convergent evolution resulting in enhanced immune evasion of important pathogens viautilization of a “superevasion site.

    Outcome and quality of life after aorto-bifemoral bypass surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aorto-bifemoral bypass (AFB) is commonly performed to treat aorto-iliac disease and a durable long-term outcome is achieved. Most studies documenting beneficial outcomes after AFB have been limited to mortality and morbidity rates, costs and length of hospital stay (LOS). Few studies have examined the dependency of patients and how their perception of their own health changes after surgery. The aim of the present study was to evaluate outcome after AFB and to study its determinants.</p> <p>Methods</p> <p>This retrospective study was carried out in the multidisciplinary Post-Anaesthesia Care Unit (PACU) with five intensive care beds. Out of 1597 intensive care patients admitted to the PACU, 75 were submitted to infrarenal AFB and admitted to these intensive care unit (ICU) beds over 2 years. Preoperative characteristics and outcome were evaluated by comparing occlusive disease with aneurysmatic disease patients. Six months after discharge, the patients were contacted to complete a Short Form-36 questionnaire (SF-36) and to have their dependency in Activities of Daily Living (ADL) evaluated. Patient's characteristics and postoperative follow-up data were compared using Mann-Whitney U test, t test for independent groups, chi-square or Fisher's exact test. Patient preoperative characteristics were evaluated for associations with mortality using a multiple logistic regression analysis.</p> <p>Results</p> <p>The mortality rate was 12% at six months. Multivariate analysis identified congestive heart disease and APACHE II as independent determinants for mortality. Patients submitted to AFB for occlusive disease had worse SF-36 scores in role physical and general health perception. Patients submitted to AFB had worse SF-36 scores for all domains than a comparable urban population and had similar scores to other PACU patients. Sixty-six percent and 23% of patients were dependent in at least one activity in instrumental and personal ADL, respectively, but 64% reported having better general health.</p> <p>Conclusion</p> <p>This study shows that congestive heart disease and APACHE II were risk factors for mortality after AFB surgery. Survivors who have undergone AFB perceive an improved quality of life although they are more dependent in ADL tasks and have worse scores in almost all SF-36 than the population to which they belong.</p
    corecore