16,764 research outputs found
Arsenic in rice agrosystems (water, soil and rice plants) in Guayas and Los Rios provinces, Ecuador
Geogenic arsenic (As) can accumulate and reach high concentrations in rice grains, thus representing a potential threat to human health. Ecuador is one of the main consumers of rice in South America. However, there is no information available about the concentrations of As in rice agrosystems, although some water bodies are known to contain high levels of the element. We carried out extensive sampling of water, soil, rice plants and commercial rice (obtained from local markets). Water samples were analysed to determine physico-chemical properties and concentrations of dissolved arsenic. Soil samples were analysed to determine total organic C, texture, total Fe and amorphous Fe oxyhydroxides (Fe-ox), total arsenic (tAs) and the bioavailable fraction (As-Me). The different plant parts were analysed separately to determine total (tAs), inorganic (iAs) and organic arsenic (oAs). Low concentrations of arsenic were found in samples of water (generally 80%) in all parts of the rice plants. (C) 2016 Elsevier B.V. All rights reserved
Initial pseudo-steady state & asymptotic KPZ universality in semiconductor on polymer deposition
The Kardar-Parisi-Zhang (KPZ) class is a paradigmatic example of universality
in nonequilibrium phenomena, but clear experimental evidences of asymptotic
2D-KPZ statistics are still very rare, and far less understanding stems from
its short-time behavior. We tackle such issues by analyzing surface
fluctuations of CdTe films deposited on polymeric substrates, based on a huge
spatio-temporal surface sampling acquired through atomic force microscopy. A
\textit{pseudo}-steady state (where average surface roughness and spatial
correlations stay constant in time) is observed at initial times, persisting up
to deposition of monolayers. This state results from a fine
balance between roughening and smoothening, as supported by a phenomenological
growth model. KPZ statistics arises at long times, thoroughly verified by
universal exponents, spatial covariance and several distributions. Recent
theoretical generalizations of the Family-Vicsek scaling and the emergence of
log-normal distributions during interface growth are experimentally confirmed.
These results confirm that high vacuum vapor deposition of CdTe constitutes a
genuine 2D-KPZ system, and expand our knowledge about possible
substrate-induced short-time behaviors.Comment: 13 pages, 8 figures, 2 table
Temperature effect on (2+1) experimental Kardar-Parisi-Zhang growth
We report on the effect of substrate temperature (T) on both local structure
and long-wavelength fluctuations of polycrystalline CdTe thin films deposited
on Si(001). A strong T-dependent mound evolution is observed and explained in
terms of the energy barrier to inter-grain diffusion at grain boundaries, as
corroborated by Monte Carlo simulations. This leads to transitions from
uncorrelated growth to a crossover from random-to-correlated growth and
transient anomalous scaling as T increases. Due to these finite-time effects,
we were not able to determine the universality class of the system through the
critical exponents. Nevertheless, we demonstrate that this can be circumvented
by analyzing height, roughness and maximal height distributions, which allow us
to prove that CdTe grows asymptotically according to the Kardar-Parisi-Zhang
(KPZ) equation in a broad range of T. More important, one finds positive
(negative) velocity excess in the growth at low (high) T, indicating that it is
possible to control the KPZ non-linearity by adjusting the temperature.Comment: 6 pages, 5 figure
Modelling of epitaxial film growth with a Ehrlich-Schwoebel barrier dependent on the step height
The formation of mounded surfaces in epitaxial growth is attributed to the
presence of barriers against interlayer diffusion in the terrace edges, known
as Ehrlich-Schwoebel (ES) barriers. We investigate a model for epitaxial growth
using a ES barrier explicitly dependent on the step height. Our model has an
intrinsic topological step barrier even in the absence of an explicit ES
barrier. We show that mounded morphologies can be obtained even for a small
barrier while a self-affine growth, consistent with the Villain-Lai-Das Sarma
equation, is observed in absence of an explicit step barrier. The mounded
surfaces are described by a super-roughness dynamical scaling characterized by
locally smooth (faceted) surfaces and a global roughness exponent .
The thin film limit is featured by surfaces with self-assembled
three-dimensional structures having an aspect ratio (height/width) that may
increase or decrease with temperature depending on the strength of step
barrier.Comment: To appear in J. Phys. Cond. Matter; 3 movies as supplementary
materia
Cosmic String Wakes in Scalar-Tensor Gravities
The formation and evolution of cosmic string wakes in the framework of a
scalar-tensor gravity are investigated in this work. We consider a simple model
in which cold dark matter flows past an ordinary string and we treat this
motion in the Zel'dovich approximation. We make a comaprison between our
results and previous results obtained in the context of General Relativity. We
propose a mechanism in which the contribution of the scalar field to the
evolution of the wakes may lead to a cosmological observation.Comment: Replaced version to be published in the Classical and Quantum Gravit
- …