18,430 research outputs found

    Faceted anomalous scaling in the epitaxial growth of semiconductor films

    Full text link
    We apply the generic dynamical scaling theory (GDST) to the surfaces of CdTe polycrystalline films grown in glass substrates. The analysed data were obtained with a stylus profiler with an estimated resolution lateral resolution of lc=0.3μl_c=0.3 \mum. Both real two-point correlation function and power spectrum analyses were done. We found that the GDST applied to the surface power spectra foresees faceted morphology in contrast with the self-affine surface indicated by the local roughness exponent found via the height-height correlation function. This inconsistency is explained in terms of convolution effects resulting from the finite size of the probe tip used to scan the surfaces. High resolution AFM images corroborates the predictions of GDST.Comment: to appear in Europhysics Letter

    Transition on the entropic elasticity of DNA induced by intercalating molecules

    Full text link
    We use optical tweezers to perform stretching experiments on DNA molecules when interacting with the drugs daunomycin and ethidium bromide, which intercalate the DNA molecule. These experiments are performed in the low-force regime from zero up to 2 pN. Our results show that the persistence length of the DNA-drug complexes increases strongly as the drug concentration increases up to some critical value. Above this critical value, the persistence length decreases abruptly and remains practically constant for larger drug concentrations. The contour length of the molecules increases monotonically and saturates as drugs concentration increases. Measured in- tercalants critical concentrations for the persistence length transition coincide with reported values for the helix-coil transition of DNA-drug complexes, obtained from sedimentation experiments.Comment: This experimental article shows and discuss a transition observed in the persistence length of DNA molecules when studied as a function of some intercalating drug concentrations, like daunomycin and ethidium bromide. It has 15 pages and 4 figures. The article presented here is in preprint forma

    Modelling of epitaxial film growth with a Ehrlich-Schwoebel barrier dependent on the step height

    Full text link
    The formation of mounded surfaces in epitaxial growth is attributed to the presence of barriers against interlayer diffusion in the terrace edges, known as Ehrlich-Schwoebel (ES) barriers. We investigate a model for epitaxial growth using a ES barrier explicitly dependent on the step height. Our model has an intrinsic topological step barrier even in the absence of an explicit ES barrier. We show that mounded morphologies can be obtained even for a small barrier while a self-affine growth, consistent with the Villain-Lai-Das Sarma equation, is observed in absence of an explicit step barrier. The mounded surfaces are described by a super-roughness dynamical scaling characterized by locally smooth (faceted) surfaces and a global roughness exponent α>1\alpha>1. The thin film limit is featured by surfaces with self-assembled three-dimensional structures having an aspect ratio (height/width) that may increase or decrease with temperature depending on the strength of step barrier.Comment: To appear in J. Phys. Cond. Matter; 3 movies as supplementary materia

    Unidentified Galactic High-Energy Sources as Ancient Pulsar Wind Nebulae in the light of new high energy observations and the new code

    Full text link
    In a Pulsar Wind Nebula (PWN), the lifetime of inverse Compton (IC) emitting electrons exceeds the lifetime of its progenitor pulsar (as well as its shell-type remnant), but it also exceeds the age of those that emit via synchrotron radiation. Therefore, during its evolution, the PWN can remain bright in IC so that its GeV-TeV gamma-ray flux remains high for timescales much larger (for 10^5 - 10^6 yrs) than the pulsar lifetime and the X-ray PWN lifetime. In this scenario, the magnetic field in the cavity induced by the wind of the progenitor star plays a crucial role. This scenario is in line with the discovery of several unidentified or "dark" sources in the TeV gamma-ray band without X-ray counterparts; and it is also finding confirmation in the recent discoveries at GeV gamma rays. Moreover, these consequences could be also important for reinterpreting the detection of starburst galaxies in the TeV gamma-ray band when considering a leptonic origin of the gamma-ray signal. Both theoretical aspects and their observational proofs will be discussed, as well as the first results of our new modeling code.Comment: Proceedings of the 5th International Symposium on High-Energy Gamma-Ray Astronomy (Gamma2012

    Absorption lines from magnetically-driven winds in X-ray binaries

    Full text link
    High resolution X-ray spectra of black hole X-ray binaries (BHBs) show blueshifted absorption lines from disk winds which seem to be equatorial. Winds occur in the Softer (disk-dominated) states of the outburst and are less prominent or absent in the Harder (power-law dominated) states. We use self-similar magneto-hydrodynamic (MHD) accretion-ejection models to explain the disk winds in BHBs. In our models, the density at the base of the outflow from the accretion disk is not a free parameter, but is determined by solving the full set of dynamical MHD equations. Thus the physical properties of the outflow are controlled by the global structure of the disk. We studied different MHD solutions characterized by different values of (a) the disk aspect ratio (ε\varepsilon) and (b) the ejection efficiency (pp). We use two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. Such heating could be from e.g. dissipation of energy due to MHD turbulence in the disk or from illumination. We use each of these MHD solutions to predict the physical parameters of an outflow; put limits on the ionization parameter (ξ\xi), column density and timescales, motivated by observational results; and thus select regions within the outflow which are consistent with the observed winds. The cold MHD solutions cannot account for winds due to their low ejection efficiency. But warm solutions can explain the observed physical quantities in the wind because they can have sufficiently high values of pp (0.1\gtrsim 0.1, implying larger mass loading at the base of the outflow). Further from our thermodynamic equilibrium curve analysis for the outflowing gas, we found that in the Hard state a range of ξ\xi is thermodynamically unstable, and had to be excluded. This constrain made it impossible to have any wind at all, in the Hard state.Comment: 16 Pages, 10 figures in the main body and 4 figures in the appendix. Accepted for publication in A&

    Non-collinear coupling between magnetic adatoms in carbon nanotubes

    Full text link
    The long range character of the exchange coupling between localized magnetic moments indirectly mediated by the conduction electrons of metallic hosts often plays a significant role in determining the magnetic order of low-dimensional structures. In addition to this indirect coupling, here we show that the direct exchange interaction that arises when the moments are not too far apart may induce a non-collinear magnetic order that cannot be characterized by a Heisenberg-like interaction between the magnetic moments. We argue that this effect can be manipulated to control the magnetization alignment of magnetic dimers adsorbed to the walls of carbon nanotubes.Comment: 13 pages, 5 figures, submitted to PR
    corecore