34,158 research outputs found

    Physical parameters and basis transformations in the Two-Higgs-Doublet model

    Full text link
    A direct connection between physical parameters of general Two-Higgs-Doublet Model (2HDM) potentials after electroweak symmetry breaking (EWSB) and the parameters that define the potentials before EWSB is established. These physical parameters, such as the mass matrix of the neutral Higgs bosons, have well defined transformation properties under basis transformations transposed to the fields after EWSB. The relations are also explicitly written in a basis covariant form. Violation of these relations may indicate models beyond 2HDMs. In certain cases the whole potential can be defined in terms of the physical parameters. The distinction between basis transformations and reparametrizations is pointed out. Some physical implications are discussed.Comment: 11 pages. 1 figure. v2: references and comments adde

    Discrete and continuous symmetries in multi-Higgs-doublet models

    Full text link
    We consider the Higgs sector of multi-Higgs-doublet models in the presence of simple symmetries relating the various fields. We construct basis invariant observables which may in principle be used to detect these symmetries for any number of doublets. A categorization of the symmetries into classes is required, which we perform in detail for the case of two and three Higgs doublets.Comment: 13 pages, RevTex, references adde

    Structure of potentials with NN Higgs doublets

    Get PDF
    Extensions of the Standard Model with NN Higgs doublets are simple extensions presenting a rich mathematical structure. An underlying Minkowski structure emerges from the study of both variable space and parameter space. The former can be completely parametrized in terms of two future lightlike Minkowski vectors with spatial parts forming an angle whose cosine is −(N−1)−1-(N-1)^{-1}. For the parameter space, the Minkowski parametrization enables one to impose sufficient conditions for bounded below potentials, characterize certain classes of local minima and distinguish charge breaking vacua from neutral vacua. A particular class of neutral minima presents a degenerate mass spectrum for the physical charged Higgs bosons.Comment: 11 pages. Revtex4. Typos corrected. Few comments adde

    Minkowski space structure of the Higgs potential in 2HDM: II. Minima, symmetries, and topology

    Full text link
    We continue to explore the consequences of the recently discovered Minkowski space structure of the Higgs potential in the two-Higgs-doublet model. Here, we focus on the vacuum properties. The search for extrema of the Higgs potential is reformulated in terms of 3-quadrics in the 3+1-dimensional Minkowski space. We prove that 2HDM cannot have more than two local minima in the orbit space and that a twice-degenerate minimum can arise only via spontaneous violation of a discrete symmetry of the Higgs potential. Investigating topology of the 3-quadrics, we give concise criteria for existence of non-contractible paths in the Higgs orbit space. We also study explicit symmetries of the Higgs potential/lagrangian and their spontaneous violation from a wider perspective than usual.Comment: 27 pages, 5 figure

    Charge breaking bounds in the Zee model

    Full text link
    We study the possibility that charge breaking minima occur in the Zee model. We reach very different conclusions from those attained in simpler, two Higgs doublet models, and the reason for this is traced back to the existence of cubic terms in the potential. A scan of the Zee model's parameter space shows that CB is restricted to a narrow region of values of the parameters
    • …
    corecore