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Extensions of the standard model with N Higgs doublets are simple extensions presenting a rich
mathematical structure. An underlying Minkowski structure emerges from the study of both variable
space and parameter space. The former can be completely parametrized in terms of two future lightlike
Minkowski vectors with spatial parts forming an angle whose cosine is ��N � 1��1. For the parameter
space, the Minkowski parametrization enables one to impose sufficient conditions for bounded below
potentials, characterize certain classes of local minima, and distinguish charge breaking vacua from
neutral vacua. A particular class of neutral minima presents a degenerate mass spectrum for the physical
charged Higgs bosons.
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I. INTRODUCTION

The scalar sector of the standard model (SM) is the only
directly untested part of this successful model which ac-
counts for all the variety of phenomena involving subnu-
clear particles [1]. The proper knowledge of the only
elementary scalar in the SM, the Higgs, is critically im-
portant to test one of the major features of the SM, the
Higgs mechanism, responsible to give masses to all mas-
sive gauge bosons and fermions and to hide the SU�2�L �
U�1�Y symmetry [2]. The discovery of the Higgs is eagerly
awaited to happen in the LHC experiment [2].

Several theoretical reasons, however, force us to con-
sider the possibility of more than one elementary scalar [3–
5]. One of the reasons is the increasingly accepted notion
that the SM is possibly a low energy manifestation of a
more fundamental, yet unknown, theory such as grand
unified theories, with or without supersymmetry, or extra-
dimensional theories, which contain more scalars in gen-
eral [6]. The search for physics beyond the SM is well
motivated by several theoretical incompleteness features or
problems the SM faces [6]. For example, the minimal
supersymmetric SM (MSSM) requires two Higgs doublets
from supersymmetry [7]. Another particular mechanism,
the spontaneous CP breaking [8], generally needs more
scalars to be implemented. Historically, the quest for alter-
native or additional CP violating sources was the reason to
consider simple extensions of the SM containing more than
one Higgs doublets, in particular, two and three Higgs
doublets [8–10].

This work aims the study of the scalar potential of
extensions of the SM with N Higgs doublets (NHDMs)
[11–13]. Such models contain a reparametrization freedom
[14] induced by SU�N�H transformations on the N Higgs
doublets which is physically irrelevant because they are in
the same representation of the gauge group, i.e., they
possess the same quantum numbers. Such reparametriza-

tion transformations are called horizontal transformations,
acting on the horizontal space formed by the N-Higgs
doublets [13]. Hence, two different potentials defined by
two different sets of parameters but connected by some
reparametrization transformation are physically equiva-
lent. Properties such as CP symmetry or asymmetry is
also independent of reparametrization which means any
CP invariant potential, even with complex parameters, can
be connected to a potential where all coefficients are real,
i.e., manifestly CP symmetric [15]. Thus, reparametriza-
tion invariant quantities, such as the Jarlskog invariant [16]
in the SM, can be constructed to quantify CP violation
[13,17,18]. In Ref. [13], we tried to solve the question:
what are the necessary and sufficient conditions for explicit
and spontaneous CP violation for a given NHDM poten-
tial? We could solve partially the explicit CP violation
conditions but the study of the different minima of the
potential were not considered.

Concerning general NHDM potentials we can pose two
questions: (1) how to find all the minima for a given
potential specified by given parameters and (2) how to
parametrize all physically permissible or interesting
NHDM potentials and sweep all their parameter space.
This work solves neither question (1) nor question (2)
completely, but some sufficient physical conditions can
be implemented and several consistency criteria can be
formulated concerning question (2) while question (1)
can be solved in some classified cases. Following the
formalism adopted in Ref. [13] to study CP violation,
and the extension for 2HDMs studied in Ref. [19], we
will study the structure of NHDMs and the properties of
the different nontrivial minima. These different minima
can be first classified into two types: the usual neutral
(N) minimum and the charge breaking (CB) minimum.
The former can be further classified into neutral normal
(NN) and CP breaking (CPB) minimum. With only one
Higgs doublet, only the neutral normal minimum is pos-
sible. With more than one doublet, emerges the possibility
of breaking also the electromagnetic symmetry (CB)*ccnishi@ift.unesp.br
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[20,21] or the CP symmetry (CPB) [8] spontaneously.
Since the CP properties were already considered in
Ref. [13], we will concentrate on the differences between
charge breaking and neutral vacua.

A rich mathematical structure also emerges from the
study of the NHDM potential. We will see an underlying
Minkowski structure will emerge, analogously to the
2HDM potential [19]. For example, it will be shown that
the variable space lies inside and on the future light cone
for an appropriately chosen set of N2 real variables. The
Minkowski structure, however, will not be sufficient to
characterize all the vacuum properties for N > 2.
Nevertheless, it is possible to consider the Lorentz group
SO�1; N2 � 1�, containing the group SU�N�H, as a power-
ful parametrization tool. For example, a sufficient condi-
tion for bounded below potentials can be formulated within
this context. Various properties of the vacuum, such as the
distinction between charge breaking and neutral vacuum,
can be also formulated in a Minkowskian language. Using
a certain gauge choice, we will also see that the variable
space can be parametrized by two future lightlike vectors
for which the cosine of the angle between their spatial parts
is the rational number ��N � 1��1.

From the physical point of view, interesting predictive
information can be extracted for certain limits. For ex-
ample, there are models preserving EM symmetry which
exhibits a degenerate mass spectrum for physical charged
Higgs bosons.

The outline is as follows: In Sec. II we analyze the
Minkowski structure of the NHDM potentials and intro-
duce some useful mathematical definitions. The section is
divided in the analysis of the variable space (Sec. II A) and
the parameter space (Sec. II B). In Sec. III we analyze the
stationary points of the potential, introduce the physical
charged Higgs basis (Sec. III A), and analyze the properties
of charge breaking (Sec. III B) and neutral (Sec. III C)
vacua. The conclusions are discussed in Sec. IV.

II. THE STRUCTURE OF THE NHDM POTENTIAL

In a previous work [13], it was shown that a general
gauge invariant potential with N � 2 SM Higgs doublets
�a � ��a1; �a2�

T, a � 1; . . . ; N, can be written solely in
terms of the real variables

 A � � 1
2�
y
a ����ab�b; � � 0; 1; . . . ; d; (1)

where �0 �
���
2
N

q
1 and f�ig are the d � N2 � 1 Hermitian

generators of SU�N�H in the fundamental representation,
obeying the normalization Tr�����	 � 2���. There is,
nevertheless, a more appropriate normalization of the vari-
able A0 in Eq. (1), whenN > 2, which allows us to uncover
a Minkowski structure in the variable space of the NHDM
potential, extending then the 2HDM case [19].

Defining

 r���� � �ya �T��ab�b; � � 0; 1; . . . ; d; (2)

where

 T� �
� �������������
N � 1

2N

s
1N;

1

2
�i
�
; (3)

it is proved in Appendix A that

 r�r� � �
a1�a1�
b2�b2 � j�
a1�a2j
2 � 0; (4)

assuming the usual Minkowski metric g�� �
diag�1;�1d�, the definition of the covariant vector r� �
g��r�, and the conventional sum over repeated indices.
Equation (4) then restricts the space of the variables r� to
be inside and on the future light cone

 LC" � fx� 2 R1;djx�x� � 0; x0 > 0g; (5)

in a Minkowski spacetime R1;d. We will see in Sec. II A
that the variables r� � r���� in Eq. (2) do not cover the
whole LC" neither do they form a vector subspace. It is
important to stress that the quantity in Eq. (4) calculated
for the vacuum expectation value signals a charge breaking
vacuum for nonzero values [19].

Using the Minkowski variables of Eq. (2) we can write
the most general gauge invariant potential in the form

 V�r� � M�r� �
1
2���r�r�; (6)

where M� is a general vector and ��� is a general sym-
metric rank-2 tensor in Minkowski space. The relation
between the parameters M and � and the more usual
parameters Y and Z, used to write the potential in the
form [15,22]

 V��� � Yab�ya�b �
1
2Z�ab��cd���

y
a�b�


��yc�d�; (7)

can be found in Appendix B. The explicit parametrization
for the 2HDM can be found in Ref. [13].

A. Variable space

The vector r� in Eq. (2) defines a particular mapping of
f�ag in CN � C2 into R1;d. The former space can be
parametrized by 4�N � 1� real parameters, with the
SU�2�L �U�1�Y gauge freedom already taken into ac-
count, while the latter space requires N2 � d� 1 parame-
ters. Since N2 � 4�N � 1� for N � 2, the mapping is
obviously not surjective. The image of such mapping
defines therefore a space

 V � � fx
� 2 LC"jx� � r����g; (8)

contained in LC". We will then analyze the properties of
V� and seek a criterion to identify if a vector x� in LC" is
also in V�.

First, define the bijective mapping f� from the set of
Hermitian complex N � N matrices, denoted by
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Mh�N; c�, into R1;d:

 f��h� � Tr�T�h	: (9)

This mapping is invertible and therefore bijective, since,
defining

 ~x � 2x� ~T�; (10)

where

 

~T � �

�
T0

N � 1
;�Ti

�
; (11)

we identify

 h � ~x; (12)

once the equality f��h� � x� holds. Such identity can be
easily verified by using the relation

 2 Tr�T� ~T�	 � g��: (13)

We can express the Minkowski inner product in
Mh�N; c� by defining a function � of a Hermitian matrix
h as

 ��h� � 1
2��Trh�2 � Tr�h2�	: (14)

It is easy to verify using the trace properties of ~T� that

 x�x� � ��~x�: (15)

It is only for the particular case of N � 2 that we have
��~x� � det~x, allowing the extension from SU�2� to
SL�2; c� that preserves the Minkowski metric and therefore
can represent the group of proper Lorentz transformations.

Now we can realize the definition in Eq. (2) corresponds
to the f� mapping of a particular class of Hermitian
matrices. Defining vectors u and w in CN such that

 ua � �a1; (16)

 wa � �a2; (17)

we can see that

 r���� � f��uuy � wwy� � f��uuy� � f��wwy�: (18)

From Eq. (15) and the property h2 � Tr�h	h for h � uuy,
we see f��uuy� and f��wwy� lie on the future light cone.
Thus r���� is a sum of two future lightlike vectors:

 r���� � x� � y�; (19)

where x�x� � 0, y�y� � 0, x0, y0 > 0. Note that the
splitting of Eq. (19) into the sum of x� � f��uuy� and
y� � f��wwy� is not gauge invariant since SU�2�L gauge
transformations can mix u with w.

Now we can state the criterion:
a vector x� in LC" is also in V� if, and only if, the

corresponding matrix ~x has rank two or less and its nonzero
eigenvalues are positive. A vector x� in V� is future
lightlike if, and only if, ~x has rank one.

The proof for necessity is trivial, since any matrix of the
form h � uuy � wwy has rank two or less and its non-null
eigenvalues are positive. The converse can be proved by
diagonalizing ~x. If ~x has rank two or less and its non-null
eigenvalues are positive, it can be written in the form

 ~x � �2
1v1v

y
1 � �

2
2v2v

y
2 ; (20)

where �2
i are the positive eigenvalues and vi their respec-

tive normalized eigenvectors. With the identification u �
�1v1 and w � �2v2 we see x� � f��uuy � wwy� is in
V� and we complete our proof. Setting �2 to zero and
using Eq. (15), we obtain the rank one subcase. One last
remark concerns the ambiguity in associating ~x with h �
uuy � wwy, since u and w need not be orthogonal.
However, the gauge freedom allows us to choose a par-
ticular representative of � for which u, w are orthogonal,
i.e.,

 uyw � 0: (21)

The proof is shown in Appendix C. With the choice of
Eq. (21), the mapping between x� in V� and h � uuy �
wwy in Mh�N; c� is unambiguous, once an ordering for the
eigenvalues of ~x is defined, hence � may also be deter-
mined uniquely, except for rephasing transformations on u,
w which does not alter the condition (21). Thus 4�N � 1�
real parameters are necessary to parametrize u,w faithfully
considering condition (21) and the rephasing freedom for u
and w. Therefore, the same number of parameters are
necessary to parametrize V�. We will adopt the choice
of Eq. (21) from this point on. Since the sum of two rank
two Hermitian matrices can be equal or greater than two,
we also see V� does not form a vector subspace of R1;d.
The exception happens for N � 2 when they form a sub-
space and V� � LC".

An interesting feature arises with the adoption of
Eq. (21): the cosine of the angle between the spatial parts
of x� � f��uuy� and y� � f��wwy� is a rational number.
Such property can be seen by

 r����r���� � 2x�y� � 2x0y0�1� cos��; (22)

where cos� � xy
jxjjyj . Equations (4) and (15) imply

 ��uuy � wwy� � juj2jwj2 �
2N
N � 1

x0y0; (23)

which yields the relation

 cos� �
�1

N � 1
: (24)

The specific angles vary from � � � (N � 2) to �!
�=2� (N ! 1). In particular, for N � 2, the vectors x�

and y� lie in opposite directions on the future light cone.
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B. Parameter space

There are two advantages of parametrizing the potential
in the form of Eq. (6) compared with the parametrization of
Eq. (7). First, we can consider any vector M with N2

components and any symmetric tensor � with N2 � N2

entries as parameters, restricted only by physical require-
ments which will be further discussed, while the tensor
Z�ab��cd� in Eq. (7) contains redundancies by index ex-
change [13]. Therefore, we can adopt the parametrization
of Eq. (6) as the starting point to analyze physical features
such as the requirement of bounded below potential or the
possibility of having CB or CPB vacua.

We have at our disposal N2�N2 � 1�=2 real parameters
in � and N2 real parameters in M. The number of physi-
cally significant parameters, however, is fewer due to the
reparametrization freedom which identifies all potentials
connected by horizontal transformations as physically
equivalent. In this context, the relevant horizontal group
is SU�N�H [13], acting on the horizontal space spanned by
the Higgs doublets. The action of a horizontal transforma-
tion U in the fundamental representation N of SU�N�H can
be written as

 �a ! Uab�b: (25)

While the quadratic variables r�, transform leaving r0

invariant and ri transforming according to the adjoint
representation d of SU�N�H, in accordance to the branch-
ing �N �N � d � 1. Since adjSU�N�H can be obtained by
exponentiation of the algebra spanned by i�Tj�kl � fjkl
which is real and antisymmetric, adjSU�N�H forms a sub-
group of SO�d�.

Because of the SU�N�H reparametrization freedom,
since the action of adjSU�N�H is effective on LC", i.e.,
some orbits in LC" are not trivial, the physically distinct
potentials can be parametrized by only N2 � 1

2N
2�N2 �

1� � �N2 � 1� � 1
2N

2�N2 � 1� � 1 real parameters.1 For
N � 2, such minimal number of parameters can be easily
achieved by diagonalizing the 3� 3 matrix �ij, which
gives 11 parameters needed to define M (4), �00 (1), �0i
(3), and �ij (3). When the potential exhibitsCP invariance,
such a basis, called canonical CP basis in Ref. [13], co-
incides with the real basis [15] for which all coefficients in
the potential are real. The minimal parametrization for
N > 2 is not explicitly known [13].

The second advantage of Eq. (6) concerns the possibility
of extending adjSU�N�H to SO�d� and then to SO�1; d�
which is the group of homogeneous proper Lorentz trans-
formations in R1;d. The importance of such extension relies
on the fact that SO�1; d� leaves LC" invariant and acts

transitively on it, i.e., any two vectors x�, y� in LC" can
be connected by SO�1; d�. If the parameter space generated
by r���� covered the whole LC", we could parametrize all
physically inequivalent NHDM potentials by parametriz-
ing the cosets SO�1; d�=adjSU�N�H acting on some fixed
representative classes of fM;�g. For example, for N � 2,
all LC" can be covered by r���� and all physically
bounded below potentials can be parametrized by parame-
ters M (4 parameters), � � diag��0;�i� (4 parameters),
with �i >��0, and a boost parameter ~� (3 parameters),
needed to generate the �0i components [19]. Boosts belong
to SO�1; 3�=adjSU�2�H and, furthermore, specially for
N � 2, they can be implemented over � with the extension
of SU�2�H to SL�2; c�.

Nevertheless, although the permissible variable space
only covers V�, which is smaller than LC" when N > 2,
we can cover a large class of physically acceptable poten-
tials by considering all r� in LC" and imposing the physi-
cal restrictions on the set fM;�g. The physical restrictions
to consider are (i) bounded below potential and (ii) the
existence of nontrivial extrema, h�i � 0.

We can impose the restriction (i) by requiring [19]
P1: � is diagonalizable by SO�1; d�, i.e., there is a basis

where

 ��� � diag��0;�i�; (26)

P2: �0 > 0 and �i >��0.

The conditions P1 and P2 are necessary and sufficient to
guarantee the quartic part of the potential in Eq. (6) to be
positive definite for all r� in LC". Since the variable space
does not cover the whole LC" but only V�, for N > 2, the
above conditions are only sufficient to guarantee the pos-
itivity of the quartic part of the potential. Obviously, the
class of potentials with the quartic part positive definite for
all r� in V� is larger. The proof of P1 and P2 follows
analogously to the 2HDM case where the group is SO�1; 3�
[19]. The treatment of general diagonalizable tensors in
SO�1; n� 1� can be found in Ref. [23].

The restriction (ii) of nontrivial extrema will be consid-
ered in the next section where the properties of stationary
points will be analyzed. One can say, however, that to
ensure the existence of nontrivial stationary points (h�i �

0), it is necessary to have the quadratic part of the potential
acquiring negative values for some �. The latter is only
possible when Y in Eq. (7) has at least one negative
eigenvalue.

III. STATIONARY POINTS

To find the stationary points we differentiate V in
Eq. (6):

 

@
@�
ai

V��� �
@
@r�

V�r�
@r�

@�
ai
�Mab�bi; (27)

1For a CP invariant potential, in the real basis, we can count
N�N � 1�=2 (quadratic) and N2�N2 � 3�=4 (quartic) parameters.
If we take the SO�N�H reparametrization freedom into account,
the potential can be parametrized by a total of N � N2�N2 �
3�=4 real parameters.
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where

 M � X�T
�; (28)

 X��r
�� � M� ����r

�: (29)

The stationary points h�i correspond to the roots of
Eq. (27), i.e., solutions of

 h�M � 12��i � 0; (30)

which requires

 dethMi � 0 (31)

for nontrivial solutions h�i � 0. The brackets hi mean to
take expectation values on all fields �, including on M.

Rewriting Eq. (30) in terms of u,w in Eqs. (16) and (17),
we have

 hMui � 0; hMwi � 0: (32)

If hui and hwi are non-null and noncollinear, Eq. (32)
means that hMi has two zero eigenvalues and hui, hwi are
the respective eigenvectors. From

 h�y�i � huyui � hwywi; (33)

it is necessary that at least one of hui or hwi be non-null to
have a nontrivial vacuum expectation value (VEV). We can
then classify CB and N stationary points depending on

(i) cond. CB: hr�r�i> 0. Equivalently, both hui and
hwi are non-null and noncollinear.

(ii) cond. N: hr�r�i � 0. Equivalently, either hui or hwi
is null or they are collinear.

On the other hand, multiplying h�iy on the left of
Eq. (30) yields

 hX�r�i � 0: (34)

For hr�i timelike, any vector orthogonal, with respect to
the Minkowski metric, have to be spacelike [24]. For hr�i
lightlike only (a) lightlike collinear vectors and
(b) spacelike vectors can be orthogonal [24]. Then we
can classify the solutions of Eq. (34) into three types,
when hr�i � 0 and in LC":

(I) Trivial solution with hX�i � 0 and hMi � 0; EM
symmetry can be broken or not.2

(II) Solution with hX�X�i � 0, hX�i � 0; EM symme-
try is always preserved and hXi� � 	hr�i corre-
sponding to case (a).

(III) Solution with hX�X�i< 0, hX�i � 0; EM symme-
try can be broken (hr�r�i> 0) or not (hr�r�i � 0).

Note that type (I) solutions also correspond to the sta-
tionary points of V�r�� with respect to r�.

Let us consider some special cases: For N � 2, for
which the identity det~x � ��~x� is valid, there are only
solutions of type (I) and (II) since Eq. (31) implies
hX�X�i � 0. Furthermore, any charge breaking solution
is of type (I). For N � 3, the type (III) solution is present
and because we need two null eigenvalues for hMi, hX�i
must be in the cone defined by �N � 1�2X2

0 �X2 � 0, i.e.,
hX�i is spacelike. The proof is shown in Appendix D.

Now we can seek the explicit solutions. For type (I)
solutions, an explicit expression can be given,

 hr�i � ����1���M
�: (35)

Of course, hr�i should be restricted to V� which only
happens when�M� is in the image of V� by ��

� [19]. If
� is not invertible, it is necessary to take the inverse only
over the non-null space.

For type (II) solutions, hr�i should satisfy

 h���r� � 	r�i � �M�; (36)

where 	 is an unknown parameter which has to be deter-
mined from Eq. (36) and the constraint that r� should be in
V�. Obviously, there may be more than one of such
solutions with different 	, as it is for the N � 2 case [19].

The type (III) solutions are not explicitly expressible and
involve nonlinear equations in Eq. (32).

Let us analyze the general properties of the potential
expanded around any stationary point. The expansion is
induced by the replacements

 �! �� h�i; (37)

 r� ! r� � hr�i � s�; (38)

where

 s� � h�iyT����yT�h�i; (39)

 � f��uhuiy� � f��whwiy� � H:c: (40)

Thus,

 V��� h�i� � V0 � V2 � V3 � V4; (41)

where

 V0 � V�hr�i�; (42)

 V2 � �yhMi�� 1
2���s

�s�; (43)

 V3 � ���s�r�; (44)

 V4 �
1
2���r

�r�: (45)

To guarantee the stationary point is a local minimum, it is
necessary and sufficient to have the mass matrix after
spontaneous symmetry breaking (SSB), extractable from
Eq. (43), to be positive semidefinite. On the other hand, due
to Eq. (34) and the positivity of V4, we have

2Note that, for neutral solutions, hMi � 0 means that all
charged scalars, i.e., one charged Goldstone and N � 1 physical
charged Higgs bosons, are massless.
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 V0 �
1
2M�hr

�i � �1
2���hr

�ihr�i< 0: (46)

The last inequality means any nontrivial stationary point
lies deeper than the trivial extremum h�i � 0.

A. Physical charged Higgs basis

We can write the potential (41) in an explicit basis where
the physical degrees of freedom can be more easily ex-
tracted. For such a purpose we choose the physical charged
Higgs (PCH) basis [25] where

 hwi �

0
..
.

0
jhwij

0
BBB@

1
CCCA � jhwijeN;

hui �

0
..
.

jhuij
0

0
BBB@

1
CCCA � jhuijeN�1;

(47)

where ei, i�1; . . . ;N defined by �ei�j��ij are the canoni-
cal basis vectors. The module jhwij denotes the square root
of hwywi� hwiyhwi. Such a choice is always allowed by
the SU�N�H reparametrization freedom, once the condition
(21) is met. Although there is an additional SU�N�1� or
SU�N � 2� reparametrization freedom in the subspace
orthogonal to hwi � 0 or hwi, hui � 0, which need to be
fixed to specify the PCH basis. Conventionally, we choose
hwi to be always non-null from the requirement of non-
trivial vacuum. Therefore, hui � 0 or hui � 0 correspond,
respectively, to the charge breaking vacuum (CBV) and the
neutral vacuum (NV) solutions.

In the PCH basis

 f��hwwyi� � hwywi

�������������
N � 1

2N

s
n�; (48)

 f��huuyi� � huyui

�������������
N � 1

2N

s
n0�; (49)

where n� and n0� have non-null components

 �n0; nN�2; nN�1� � �1; 0;�1�; (50)

 �n00; n0N�2; n0N�1� �

�
1;�

���������������������
N�N � 2�

p
N � 1

;
1

N � 1

�
; (51)

given the ordering of � following

 fT0; ha;Sab;Aabg; (52)

with a � 1; . . . ; N � 1, b � 1; . . . ; N, and a < b, denoting
the non-null entries of 2�Sab�ab � 2�Sab�ba � 1 and
2�Aab�ab � �2�Aab�ba � �i [13], which are the com-
bination of ladder operators analogous to 
1 and 
2 for
SU�2�. The matrices ha form the Cartan subalgebra which

can be chosen diagonal. Notice that Eqs. (50) and (51)
satisfy Eq. (24).

From Eq. (32), we have for hwi � 0

 hMaNi � hMNai � 0; (53)

for all a � 1; . . . ; N. In addition, if hui � 0 (CBV), we
have

 hMa;N�1i � hMN�1;ai � 0; (54)

reducing the non-null matrix to its upper-left �N � 1� �
�N � 1� (hui � 0) or �N � 2� � �N � 2� (hui � 0) subma-
trix. In both cases we can use the remaining reparametri-
zation freedom to choose hMi diagonal

 hMi �

�
diag�m2

a; 0; 0�; a � 1; . . . ; N � 2 for hui � 0;
diag�m2

a; 0�; a � 1; . . . ; N � 1 for hui � 0:

(55)

This form can be always achieved because the remaining
SU�N � 1� or SU�N � 2� reparametrization freedom
leaves hr�i invariant. Equation (55) defines the PCH basis
uniquely if the eigenvalues m2

a are ordered, assuming they
are not degenerate.

The null eigenvalues of Eq. (55) correspond to the
Goldstone modes for the combination of fields not present
in s���� in Eq. (43). The four massless Goldstone modes
are

 

���
2
p

Im�wN�;
���
2
p

Im�uN�1�; (56)

and the fields R, I proportional, by real normalization
constants, to

 R / jhuijRe�wN�1� � jhwijRe�uN�; (57)

 I / jhuij Im�wN�1� � jhwij Im�uN�: (58)

To find the Goldstone modes for the neutral vacuum solu-
tion it is sufficient to set hui � 0 in the equations above and
disconsider Eq. (54) which makes

���
2
p

Im�uN�1� also mas-
sive. The explicit form of s���� in this basis is shown in
Appendix E.

B. Charge breaking vacuum

Avacuum expectation value h�i breaking EM symmetry
(CBV) [20], is characterized by cond. CB stated in Sec. III.
They can be of type (I) or (III). To assure two zero
eigenvalues we must have

 dethMi � ��1�N�1�N�hMi� � 0; �N�1�hMi� � 0:

(59)

The explicit forms of the matricial functions �k are unim-
portant here, except that knowing the traces Tr�hMij	 from
j � 1; . . . ; k determines �k uniquely. The explicit form can
be found in Eq. (D5). Equation (59) defines two equations
for hr�i in addition to the restriction that hr�i belongs to
V�. Then, the possible vectors hui and hwi extracted from
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the possible hr�i, through the procedure in Eq. (20), should
be the eigenvectors of hMi with eigenvalue zero.

Some conditions, however, can be extracted in the PCH
basis. From hwyMwi � 0 and huyMui � 0, we have, re-
spectively,

 hX0i � hXN�1i; (60)

 

���������������������
N�N � 2�

p
hXN�2i � �N � 1�hX0i � hXN�1i � NhX0i:

(61)

Then,

 � hX�X
�i � hX2

N�1 � X
2
N�2 � X

2
0i �

N
N � 2

hX2
0i; (62)

confirming, for N > 2, that all charge breaking solutions
are of type (III) unless hXii � 0, which implies a type (I)
solution.

For type (I) solutions, one can see from Eq. (43) that the
masses of all scalars will depend only on � which has to be
positive definite in the basis defined by the non-Goldstone
fields; such a condition assures the stationary point is a
local minimum. In the PCH basis we can extract the mass
matrix from the field combinations s���� in Appendix E.
The only non-null combinations are s���� with

 T� � T0; hN�2; hN�1;SaN;SbN�1;AaN;AbN�1; (63)

for a � 1; . . . ; N � 1 and b � 1; . . . ; N � 2. These field
combinations can be considered as independent except for

 sN�2 � �

�������������
N � 2

N

s
�s0 � sN�1�: (64)

The mass matrix �M2
CB�ab can then be extracted from ���

eliminating all components �, � not contained in Eq. (63)
and eliminating the component � � N � 2 or � � N � 2
using Eq. (64). The resulting matrix, which is 4�N � 1�
dimensional [1� 1� 2�N � 1� � 2�N � 2�], should be
positive definite. For N � 2, �M2

CB�ab is four dimensional
and is ��� itself, identifying a; b � �� 1, �� 1 � 1, 2,
3, 4, except for normalization factors for s���� [19].

For type (III) solutions, in addition to the second term of
Eq. (43), which is the same as for type (I) solutions, we
have to add the first term given by

 

XN�2

a�1

m2
a�juaj

2 � jwaj
2�; (65)

using Eq. (55). Notice that the coefficients of ���, not
present in Eq. (43), do not contribute to the masses but only
to the trilinear and quartic interactions in Eqs. (44) and
(45).

C. Neutral vacuum

A neutral vacuum is characterized by cond. N stated in
Sec. III. These solutions have hr����i lightlike, hwi � 0

but hui � 0 and they can be of types (I), (II), or (III). We
can set hui � 0 in all previous calculations where charge
breaking was assumed. We can promptly see that s� in
Eq. (40) does not depend on ua. Hence, from Eq. (43) we
conclude that hMi is the mass matrix for the charged Higgs
bosons, i.e., the matrix whose eigenvalues are the squared
masses of the charged Higgs bosons, combinations of ua.
The single null eigenvalue corresponds to the charged
Goldstone. This conclusion can be also reached by taking
the matrix of second derivatives of V with respect to �
ai
and �bj, and take the VEV for i � j � 1. On the other
hand, the mass matrix for neutral Higgs bosons, combina-
tions of wa, depends explicitly on � in addition to the
contribution of hMi. In the PCH basis, the three Goldstone
modes are the neutral

���
2
p

ImwN and charged uN . The SM
Higgs is

���
2
p

RewN .
Let us analyze type (III) solutions for which the follow-

ing proposition can be proved.
Proposition 1: For all N � 3, any type (III) solution

which preserves EM symmetry must have hX�i in the
region defined by

 LCN � fx� 2 R1;dj�N � 1�2x2
0 � x2 � 0 and x�x� < 0g:

(66)

This condition is not Lorentz invariant but SU�N�H invari-
ant. Such a proposition means neutral type (III) solutions
cannot have arbitrarily spacelike hX�i. The proof is shown
in Appendix D.

The type (II) solutions are the most predictive ones for
we have hX�i � 	hr�i, 	> 0. From

 2x�T
� �

N
N � 1

T0x0 � ~x; (67)

for any x� in R1;d, we can conclude that

 hMi � 	hr�iT
� �

	h�y�i

2

�
1�
hwwyi

hwywi

�
; (68)

where hwywi � h�y�i � v2=2 and v � 246 GeV is the
electroweak symmetry breaking scale, considering the ba-
sis where hui � 0. Obviously, hwi is an eigenvector of hMi
with eigenvalue zero. Notice that Eq. (68) implies hMi
satisfies the matricial equation

 hMi2 �
	
4
v2hMi: (69)

With the simple structure of Eq. (68), a remarkable
result can be proved: all charged physical Higgs bosons
have the same mass. Such a result can be more easily seen
in the PCH basis where Eq. (47) is valid. Then, from
Eq. (68), the physical charged Higgs bosons are the fields
ui, with i � 1; . . . ; N � 1, and they all have mass squared

 m2
H� �

	
4
v2: (70)

Although the exact value of 	 should be a complicated
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function of the parameters M, � derived from Eq. (36), the
degenerate mass spectrum is a testable prediction.

The mass matrix for the neutral fields can be also
straightforwardly constructed from hMi and � using
Eq. (43) but usually nondegenerate because of the contri-
bution of �. The procedure of construction, in the PCH
basis, is analogous to the one in Sec. III B but the non-null
components of s�, instead of Eq. (63), correspond to

 T� � T0; hN�1;SaN;AaN; (71)

a � 1; . . . ; N � 1, with the non-null s� all functionally
independent and depending solely on wa. The procedure
is the same for type (III) solutions.

Comparing neutral type (II) solutions with neutral type
(III) solutions, we see �hX�X�i � 0 is a measure of how
degenerate the masses are of the physical charged bosons.
Knowing the mass matrix hMi, we can recover hX�i from

 hX�i � 2 Tr� ~T�hMi	: (72)

The properties of neutral type (I) solutions can be ana-
lyzed setting 	! 0 in the type (II) solutions. We can
conclude that all charged Higgs bosons are massless.
Therefore, there are N � 1 charged pseudo Goldstone
bosons and one genuine charged Goldstone contributing
to the Higgs mechanism.

IV. CONCLUSIONS

The study of the NHDM potentials performed here
reveals a very rich underlying structure. In terms of the
set of variables defined in Eq. (2), the variable space is
limited to a subregion contained inside and on the future
light cone LC" of a 1� d � N2 dimensional Minkowski
space. Furthermore, imposing the gauge condition (21), the
variable space can be parametrized by two lightlike vectors
whose spatial parts form an angle for which the cosine is
��N � 1��1. The Minkowski structure also enabled us to
find a sufficient, yet very general, criterion to require a
bounded below potential. The Lorentz group can be also
used as a powerful parametrization tool using the cosets
SO�1; d�=adjSU�N�H to avoid reparametrization redun-
dancies. Charge breaking vacuum and neutral vacuum
can be distinguished by calculating the Minkowski length
of r���� for VEVs. The stationary points can be classified
according to the Minkowski length of hX�i, in Eq. (29),
into types (I), (II), and (III).

The Minkowski structure would also help to seek the
type (II) minima. The method of caustics presented in
Ref. [19] may be generalized to count the number of
type (II) solutions for r� restricted to LC". The restric-
tion to V�, however, would need more mathematical
tools. For example, the proper parametrization of
SO�1; d�=adjSU�N�H would be very important to the com-
plete study of the NHDM potential minima.

The knowledge of the matrix hMi (or hX�i) and � is
sufficient to construct the mass matrix for all the scalars. In
particular, when EM symmetry is not broken, hMi is itself
the mass matrix of the charged Higgs bosons while the
mass matrix of neutral bosons also requires the information
of �. In view of the privileged information contained in
hMi, one can try to parametrize any physical NHDM
potential by attributing to hMi a general N � N
Hermitian matrix (positive semidefinite if NV) with one
(NV) or two (CBV) null eigenvalues and attributing to � a
general N2 � N2 real symmetric matrix which keeps V4 of
Eq. (45) positive definite. The quadratic coefficient before
SSB, Y � M�T

�, can be obtained from

 Y � hMi ����hr
�iT�; (73)

where

 hr�i � 	1f
��hv1v

y
1 i� � 	2f

��hv2v
y
2 i�; (74)

with 	1, 	2 nonnegative and v1, v2 orthonormal eigenvec-
tors of hMi with eigenvalue zero. The parameters 	1, 	2

should be constrained by 	1 � 	2 � h�
y�i � v2=2. This

parametrization is not minimal but it assures that the sta-
tionary point (74) is a local minimum and has the advan-
tage that some physical parameters, such as the masses of
the charged Higgs bosons, can be chosen as parameters. On
the other hand, nothing prevents the potential, defined with
general � and Y, as in Eq. (73), to have a minimum hr0�i
that lies deeper than the original hr�i, in Eq. (74), used for
parametrization. Such possibility limits the potentialities
of this parametrization fixed by fhMi;�g since the original
minimum must be checked if it is the absolute minimum. In
the 2HDM, for example, potentials with two neutral vacua
lying in different depths can be constructed [26].

For parametrization purposes, the form of Eq. (6) is also
very advantageous since it avoids the redundancies con-
tained in Z�ab��cd� when written in the form of Eq. (7). Other
several quantities can guide, for instance, numerical stud-
ies to distinguish charge breaking vacua from neutral vacua
or local minima from saddle points. To identify the abso-
lute minimum, however, is still a difficult question.

The interesting case of mass degenerate charged Higgs
bosons, the type (II) vacuum, may have testable phenome-
nological implications. Because of the same mass we could
have an enhancement of production of physical charged
Higgs bosons for large N. However, even in this case,
because some parameters in � can be functionally free in
the trilinear and quartic interactions, the predictions for its
width can be very difficult and variable. Usually, as ex-
pected, as N grows, we rapidly lose predictability unless
we impose some symmetries or approximations. The mass
degeneracy is then a very predictive result for certain
NHDMs.

Even without the knowledge of an explicit minimum of
the potential, writing the theory in the PCH basis presents
various advantages. The two main advantages are the
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easily extractable physical information and the minimality
of parametrization. For example, the VEVs in the PCH
basis depend only on two real nonnegative parameters,
jhuij and jhwij, a smaller number than the four real pa-
rameters needed in the basis shown in Ref. [11]. Obviously,
since the VEVs are real, the CP properties of the vacuum
should be encoded in the parameters M0 and �0 trans-
formed by SU�N�H in the PCH basis. Thus, if the original
parameters M and � are invariant by the canonical CP
reflections [13], only the real subgroup SO�N�H should
connect the original basis to the PCH basis, besides rephas-
ing transformations.

In conclusion, the results presented here uncover a rich
structure contained in the NHDM potential and illuminates
the properties of the possible vacua. A complete study of
certain specific models should be guided by more restric-
tive ingredients and interesting phenomenology. The study
performed here, however, is sufficiently general to cover a
large class of physically possible NHDMs.

ACKNOWLEDGMENTS

This work was supported by Fundação de Amparo à
Pesquisa do Estado de São Paulo (Fapesp). The author
would like to thank Professor Juan Carlos Montero and
Professor Vicente Pleitez for critical discussions. The au-
thor would also like to thank I. P. Ivanov for useful
discussions.

APPENDIX A: PROOF OF EQ. (4)

First, we recall the completeness formulas for SU�N�H
and SU�2�L, respectively [27]

 

1
2 ��

��ab��
��cd � �ad�cb; (A1)

 

1
2 �


��ij�

��kl � �il�kj: (A2)

Then, the combination of both relations yields

 �y��� � 12���y��� � 12��

� �y�1N � 
����y�1N � 
���; (A3)

where the left-hand side of the equation is a shorthand for
�
ai��

��ab�bi�


ck��

��ab�dk, the indices a; b; c; d �
1; . . . ; N label the doublets (horizontal space), and i; k �
1, 2 label each field in the doublet [representation space for
SU�2�L]. We can explicitly verify the relation

 
 � �
a1�a1�


b2�b2 � j�



a1�a2j

2

� 1
4���

y��2 � ��y1N � ~
��2	; (A4)

which is always nonnegative due to Schwartz inequality.
Finally, substituting ��y1N � ~
��2 of Eq. (A4) into
Eq. (A3) yields

 

N � 1

2N
��y��2 �

�
1

2
�y ~� � 12�

�
2
� 
 � 0; (A5)

which is the desired relation.

APPENDIX B: TRANSLATION RULES

The relation between the parameters Y, Z of Eq. (7) and
the parameters M, � of Eq. (6) is [13]

 M� � 2 Tr�Y ~T�	; (B1)

 ��� � 4� ~T��abZ�ab��cd�� ~T��
cd; (B2)

where ~T� is defined in Eq. (11). The relations above can be
obtained from the inverse of Eq. (2),

 �ya�b � 2� ~T��bar���� � 2� ~T�r��
ab; (B3)

derived from the completeness relation (A1) written in
terms of T� and ~T�, i.e.,

 2�T��ab� ~T��cd � �ad�cb: (B4)

APPENDIX C: GAUGE CHOICE FOR �

We will prove here we can always perform a gauge
transformation SU�2�L �U�1�Y on � � u � e1 � w � e2

that renders u and w orthogonal, i.e., Eq. (21) is satisfied.
First, we recall a gauge transformation U acts equally on

all the doublets as

 �a ! U�a: (C1)

We know some gauge transformations in SU�2�L mix the
vectors ua � �a1 and wa � �a2, which induces compli-
cated transformations on f��uuy� and f��wwy�. We know,
however, the combinations

 zA � uy wy
� �

�A
u
w

� �
; A � 1; 2; 3; (C2)

transform as vectors in R3 by ordinary rotations, where �A
are Pauli matrices, generators of SU�2�L. Therefore, we
can always rotate the vector in Eq. (C2) to its third com-
ponent. Requiring z1 � 2 Re�uyw� � 0 and z2 �
2 Im�uyw� � 0 implies uyw � 0.

APPENDIX D: CHARACTERISTIC EQUATION
FOR MATRICES

First, comparing

 ��2x�T
�� � �N � 1�2x2

0 � x2 (D1)

with ��2x� ~T�� � x�x
�, we obtain

 x�x
� � ��2x�T

�� � N�N � 2�x2
0: (D2)

Now we can equate x� � hX�i of Eq. (29) and require
semidefinite positiveness for hMi, Eq. (28), i.e., all eigen-
values are nonnegative, since hMi corresponds to the mass
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matrix of the charged Higgs bosons when EM symmetry is
preserved. Then, the semidefinite positivity of hMi implies
��hMi� � 0, hence

 hX�X
�i � �N�N � 2�hX0i

2; (D3)

which is equivalent to state that hX�i is in LCN , when hXi�

is spacelike. The equality holds for N � 3, for charge
breaking solutions, as will be proved in the following.

For any square matrix A, the characteristic equation can
be written as [13]

 det�A� �1� � ��1�n
�
�n �

Xn
k�1

�k�A��
n�k

�
; (D4)

where

 �k�A� �
1

k
Tr
�
Ak �

Xk�1

j�1

�j�A�Ak�j
�
: (D5)

In particular, the function � defined in Eq. (14) is related to
�2 by

 ��A� � ��2�A�: (D6)

For 3� 3 matrices we have then

 det�A� �1� � ��1���3 � �1�A��
2 � �2�A��� �3�A�	:

(D7)

To have two null eigenvalues we must have �2�A� �
�3�A� � 0.

APPENDIX E: s� IN THE PHYSICAL CHARGED
HIGGS BASIS

The combination of fields in s����, Eq. (39), determines
the non-Goldstone modes. In the physical charged Higgs
basis, they can be written explicitly. The list of all T� was
shown in Eq. (52), as well as the explicit representation for
Sab and Aab. For the Cartan subalgebra formed by ha we
can adopt [13]

 ha �
1���������������������

2a�a� 1�
p diag�1a;�a; 0; . . . ; 0�;

a � 1; . . . ; N � 1:

(E1)

A more detailed description of the parametrization of the
SU�N� algebra in the fundamental representation can be
found in Ref. [13]. In the following, we list only the non-
null components of s�, according to T�.

(i) T0:

 s0 �

�������������������
2�N � 1�

N

s
�jhwijRe�wN� � jhuijRe�uN�1�	:

(E2)
(ii) Ti � ha, a � 1; . . . ; N � 1:

 sN�1 �

�������������������
2�N � 1�

N

s
��N � 1�jhuijRe�uN�1�

� jhwijRe�wN�	; (E3)

 sN�2 � �

�������������������
2�N � 2�

N � 1

s
jhuijRe�uN�1�: (E4)

(iii) Ti � Sab, a � 1; . . . ; N � 1, b � N, s���� !
sab� ���:

 sa;N� � jhwijRe�wa� � �a;N�1jhuijRe�uN�; (E5)

 sa;N�1
� � jhuijRe�ua�; a < N � 1: (E6)

(iv) Ti �Aab, a � 1; . . . ; N � 1, b � N, s���� !
sab� ���:

 sa;N� � �jhwij Im�wa� � �a;N�1jhuij Im�uN�; (E7)

 sa;N�1
� � �jhuij Im�ua�; a < N � 1: (E8)

From Eqs. (53) and (54), the fields uN , uN�1, wN , wN�1 are
absent in the first term of the quadratic part of the potential
in Eq. (43). The fields ImwN and ImuN�1 are also absent in
s���� which make them massless. The real components
RewN and ReuN�1 are present in Eqs. (E2)–(E4). The
reminder of the fields involving wN�1 and uN are only
present in the combinations of Eqs. (E5) and (E7) for a �
N � 1. The orthogonal combinations shown in Eqs. (57)
and (58) are then massless.
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