47 research outputs found

    Body Composition As A Frailty Marker For The Elderly Community.

    Get PDF
    Body composition (BC) in the elderly has been associated with diseases and mortality; however, there is a shortage of data on frailty in the elderly. To investigate the association between BC and frailty, and identify BC profiles in nonfrail, prefrail, and frail elderly people. A cross-sectional study comprising 235 elderly (142 females and 93 males) aged ≥65 years, from the city of Amparo, State of São Paulo, Brazil, was undertaken. Sociodemographic and cognitive features, comorbidities, medication, frailty, body mass index (BMI), muscle mass, fat mass, bone mass, and fat percent (%) data were evaluated. Aiming to examine the relationship between BC and frailty, the Mann-Whitney and Kruskal-Wallis nonparametric tests were applied. The statistical significance level was P<0.05. The nonfrail elderly showed greater muscle mass and greater bone mass compared with the prefrail and frail ones. The frail elderly had greater fat % than the nonfrail elderly. There was a positive association between grip strength and muscle mass with bone mass (P<0.001), and a negative association between grip strength and fat % (P<0.001). Gait speed was positively associated with fat mass (P=0.038) and fat % (P=0.002). The physical activity level was negatively associated with fat % (P=0.022). The weight loss criterion was positively related to muscle mass (P<0.001), bone mass (P=0.009), fat mass (P=0.018), and BMI (P=0.003). There was a negative association between fatigue and bone mass (P=0.008). Frailty in the elderly was characterized by a BC profile/phenotype with lower muscle mass and lower bone mass and with a higher fat %. The BMI was not effective in evaluating the relationship between BC and frailty. The importance of evaluating the fat % was verified when considering the tissue distribution in the elderly BC.101661-166

    Quantifying and mapping species threat abatement opportunitiesto support national target setting

    Get PDF
    The successful implementation of the Convention on Biological Diversity’s post-2020Global Biodiversity Framework will rely on effective translation of targets from global tonational level and increased engagement across diverse sectors of society. Species conserva-tion targets require policy support measures that can be applied to a diversity of taxonomicgroups, that link action targets to outcome goals, and that can be applied to both global andnational data sets to account for national context, which the species threat abatement andrestoration (STAR) metric does. To test the flexibility of STAR, we applied the metric to vascular plants listed on national red lists of Brazil, Norway, and South Africa. The STARmetric uses data on species’ extinction risk, distributions, and threats, which we obtainedfrom national red lists to quantify the contribution that threat abatement and habitatrestoration activities could make to reducing species’ extinction risk. Across all 3 coun-tries, the greatest opportunity for reducing plant species’ extinction risk was from abatingthreats from agricultural activities, which could reduce species’ extinction risk by 54% inNorway, 36% in South Africa, and 29% in Brazil. Species extinction risk could be reducedby a further 21% in South Africa by abating threats from invasive species and by 21% inBrazil by abating threats from urban expansion. Even with different approaches to red-listing among countries, the STAR metric yielded informative results that identified wherethe greatest conservation gains could be made for species through threat-abatement andrestoration activities. Quantifiably linking local taxonomic coverage and data collection toglobal processes with STAR would allow national target setting to align with global targetsand enable state and nonstate actors to measure and report on their potential contributionsto species conservation. habitat restoration, national red lists, species’ extinction risk, threat reduction, threatened species, vascular plantspublishedVersio

    Genotype and phenotype landscape of MEN2 in 554 medullary thyroid cancer patients: the BrasMEN study

    Get PDF
    Multiple endocrine neoplasia type 2 (MEN2) is an autosomal dominant genetic disease caused by RET gene germline mutations that is characterized by medullary thyroid carcinoma (MTC) associated with other endocrine tumors. Several reports have demonstrated that the RET mutation profile may vary according to the geographical area. In this study, we collected clinical and molecular data from 554 patients with surgically confirmed MTC from 176 families with MEN2 in 18 different Brazilian centers to compare the type and prevalence of RET mutations with those from other countries. The most frequent mutations, classified by the number of families affected, occur in codon 634, exon 11 (76 families), followed by codon 918, exon 16 (34 families: 26 with M918T and 8 with M918V) and codon 804, exon 14 (22 families: 15 with V804M and 7 with V804L). When compared with other major published series from Europe, there are several similarities and some differences. While the mutations in codons C618, C620, C630, E768 and S891 present a similar prevalence, some mutations have a lower prevalence in Brazil, and others are found mainly in Brazil (G533C and M918V). These results reflect the singular proportion of European, Amerindian and African ancestries in the Brazilian mosaic genome

    The multiple facets of drug resistance: one history, different approaches

    Full text link
    corecore