35,775 research outputs found

    Charge breaking bounds in the Zee model

    Full text link
    We study the possibility that charge breaking minima occur in the Zee model. We reach very different conclusions from those attained in simpler, two Higgs doublet models, and the reason for this is traced back to the existence of cubic terms in the potential. A scan of the Zee model's parameter space shows that CB is restricted to a narrow region of values of the parameters

    Magnetic braking in young late-type stars: the effect of polar spots

    Full text link
    The concentration of magnetic flux near the poles of rapidly rotating cool stars has been recently proposed as an alternative mechanism to dynamo saturation in order to explain the saturation of angular momentum loss. In this work we study the effect of magnetic surface flux distribution on the coronal field topology and angular momentum loss rate. We investigate if magnetic flux concentration towards the pole is a reasonable alternative to dynamo saturation. We construct a 1D wind model and also apply a 2-D self-similar analytical model, to evaluate how the surface field distribution affects the angular momentum loss of the rotating star. From the 1D model we find that, in a magnetically dominated low corona, the concentrated polar surface field rapidly expands to regions of low magnetic pressure resulting in a coronal field with small latitudinal variation. We also find that the angular momentum loss rate due to a uniform field or a concentrated field with equal total magnetic flux is very similar. From the 2D wind model we show that there are several relevant factors to take into account when studying the angular momentum loss from a star. In particular, we show that the inclusion of force balance across the field in a wind model is fundamental if realistic conclusions are to be drawn from the effect of non-uniform surface field distribution on magnetic braking. This model predicts that a magnetic field concentrated at high latitudes leads to larger Alfven radii and larger braking rates than a smoother field distribution. From the results obtained, we argue that the magnetic surface field distribution towards the pole does not directly limit the braking efficiency of the wind.Comment: 11 pages, 10 figures, accepted in A&

    The split-operator technique for the study of spinorial wavepacket dynamics

    Full text link
    The split-operator technique for wave packet propagation in quantum systems is expanded here to the case of propagating wave functions describing Schr\"odinger particles, namely, charge carriers in semiconductor nanostructures within the effective mass approximation, in the presence of Zeeman effect, as well as of Rashba and Dresselhaus spin-orbit interactions. We also demonstrate that simple modifications to the expanded technique allow us to calculate the time evolution of wave packets describing Dirac particles, which are relevant for the study of transport properties in graphene.Comment: 19 pages, 4 figure

    Mass for Plasma Photons from Gauge Symmetry Breaking

    Full text link
    We derive the effective masses for photons in unmagnetized plasma waves using a quantum field theory with two vector fields (gauge fields). In order to properly define the quantum field degrees of freedom we re-derive the classical wave equations on light-front gauge. This is needed because the usual scalar potential of electromagnetism is, in quantum field theory, not a physical degree of freedom that renders negative energy eigenstates. We also consider a background local fluid metric that allows for a covariant treatment of the problem. The different masses for the longitudinal (plasmon) and transverse photons are in our framework due to the local fluid metric. We apply the mechanism of mass generation by gauge symmetry breaking recently proposed by the authors by giving a non-trivial vacuum-expectation-value to the second vector field (gauge field). The Debye length λD\lambda_D is interpreted as an effective compactification length and we compute an explicit solution for the large gauge transformations that correspond to the specific mass eigenvalues derived here. Using an usual quantum field theory canonical quantization we obtain the usual results in the literature. Although none of these ingredients are new to physicist, as far as the authors are aware it is the first time that such constructions are applied to Plasma Physics. Also we give a physical interpretation (and realization) for the second vector field in terms of the plasma background in terms of known physical phenomena. Addendum: It is given a short proof that equation (10) is wrong, therefore equations (12-17) are meaningless. The remaining results are correct being generic derivations for nonmagnetized plasmas derived in a covariant QFT framework.Comment: v1: 1+6 pages v2: Several discussions rewritten; Abstract rewritten; References added; v3: includes Addendu

    Germinação de esporos de Byssochlamys nivea e Alicyclobacillus acidoterrestris por alta pressão e temperaturas médias em suco de laranja integral.

    Get PDF
    Byssochlamys nĂ­vea e Alicyclobacillus acidoterrestris sĂŁo microorganismos deterioradores de grande importĂąncia para a indĂșstria de suco de frutas, por serem capazes de produzir esporos que por sua vez suportam os tratamentos tĂ©rmicos, normalmente utilizados na pasteurização de sucos. Esses esporos podem ser ativados pelo calor antecipando a deterioração desses alimentos e causando grandes prejuĂ­zos Ă  indĂșstria de suco de frutas. Assim, a busca por novas estratĂ©gias para minimizar esses problemas tem sido objeto de pesquisa. O estudo da associação entre tecnologias tĂ©rmicas e nĂŁo tĂ©rmicas vem se destacando, na tentativa de controlar ou inibir a presença desses micro-organismos. Uma das estratĂ©gias Ă© a inativação dos micro-organismos em duas etapas. Na primeira, um prĂ©-tratamento visa sensibilizar os microorganismos por meio de ativação da germinação. Na segunda etapa, o tratamento teria como objetivo inativar os micro-organismos sensibilizados. Neste estudo, utilizou-se a combinação de temperatura seguido de alta pressĂŁo, a fim de testar o comportamento de esporos de B. nivea e A. acidoterrestris. As temperaturas variaram de 46,6-63,4 °C durante vinte minutos, seguidos de alta pressĂŁo que variaram entre 300 e 500 MPa, por tempos de 5 a 15 minutos, constituindo o delineamento composto central rotacional (DCCR). Para a germinação de B. nivea, o fator mais significativo (p<0,05) foi a alta pressĂŁo. Quanto mais alta a pressĂŁo, maior a germinação, atingindo um nĂ­vel mĂĄximo a 500 MPa. Para a germinação de esporos de A. acidoterrestris, a temperatura foi o fator mais significativo (p<0,05), seguindo a tendĂȘncia de quanto mais elevada a temperatura, maior a germinação dos esporos

    Streaming velocities as a dynamical estimator of Omega

    Full text link
    It is well known that estimating the pairwise velocity of galaxies, v_{12}, from the redshift space galaxy correlation function is difficult because this method is highly sensitive to the assumed model of the pairwise velocity dispersion. Here we propose an alternative method to estimate v_{12} directly from peculiar velocity samples, which contain redshift-independent distances as well as galaxy redshifts. In contrast to other dynamical measures which determine beta = sigma_8 x Omega^{0.6}, our method can provide an estimate of (sigma_8)^2 x Omega^{0.6} for a range of sigma_8 (here Omega is the cosmological mass density parameter while sigma_8 is the standard normalization parameter for the spectrum of matter density fluctuations). We demonstrate how to measure this quantity from realistic catalogues.Comment: 8 pages of text, 4 figures Subject headings: Cosmology: theory - observation - peculiar velocities: large scale flows Last name of one of the authors was misspelled. It is now corrected. Otherwise the manuscript is identical to its original versio

    Measuring Omega with Galaxy Streaming Velocities

    Full text link
    The mean pairwise velocity of galaxies has traditionally been estimated from the redshift space galaxy correlation function. This method is notorious for being highly sensitive to the assumed model of the pairwise velocity dispersion. Here we propose an alternative method to estimate the streaming velocity directly from peculiar velocity samples, which contain redshift-independent distances as well as galaxy redshifts. This method can provide an estimate of Ω0.6σ82\Omega^{0.6}\sigma_8^2 for a range of σ8\sigma_8 where Ω\Omega is the cosmological density parameter, while σ8\sigma_8 is the standard normalization for the power spectrum of density fluctuations. We demonstrate how to measure this quantity from realistic catalogues and identify the main sources of bias and errorsComment: Proceedings of New Worlds in Astroparticle Physics, 6 pages, 2 figure

    Evidence for a low-density Universe from the relative velocities of galaxies

    Full text link
    The motions of galaxies can be used to constrain the cosmological density parameter Omega and the clustering amplitude of matter on large scales. The mean relative velocity of galaxy pairs, estimated from the Mark III survey, indicates that Omega = 0.35 +0.35/-0.25. If the clustering of galaxies is unbiased on large scales, Omega = 0.35 +/- 0.15, so that an unbiased Einstein-de Sitter model (Omega = 1) is inconsistent with the data.Comment: 12 pages, 2 figures, to appear in the Jan.7 issue of ``Science''; In the original version, the title appeared twice. This problem has now been corrected. No other changes were mad

    Trypanosomatids are common and diverse parasites of Drosophila

    Get PDF

    Two-component mixture of charged particles confined in a channel: melting

    Full text link
    The melting of a binary system of charged particles confined in a {\it quasi}-one-dimensional parabolic channel is studied through Monte Carlo simulations. At zero temperature the particles are ordered in parallel chains. The melting is anisotropic and different melting temperatures are obtained according to the spatial direction, and the different types of particles present in the system. Melting is very different for the single-, two- and four-chain configurations. A temperature induced structural phase transition is found between two different four chain ordered states which is absent in the mono-disperse system. In the mixed regime, where the two types of particles are only slightly different, melting is almost isotropic and a thermally induced homogeneous distribution of the distinct types of charges is observed.Comment: To appear in Journal of Physics: condensed matter ; (13 pages, 12 figures
    • 

    corecore