1,247 research outputs found

    Magnetic domain structure and dynamics in interacting ferromagnetic stacks with perpendicular anisotropy

    Full text link
    The time and field dependence of the magnetic domain structure at magnetization reversal were investigated by Kerr microscopy in interacting ferromagnetic Co/Pt multilayers with perpendicular anisotropy. Large local inhomogeneous magnetostatic fields favor mirroring domain structures and domain decoration by rings of opposite magnetization. The long range nature of these magnetostatic interactions gives rise to ultra-slow dynamics even in zero applied field, i.e. it affects the long time domain stability. Due to this additionnal interaction field, the magnetization reversal under short magnetic field pulses differs markedly from the well-known slow dynamic behavior. Namely, in high field, the magnetization of the coupled harder layer has been observed to reverse more rapidly by domain wall motion than the softer layer alone.Comment: 42 pages including 17 figures. submitted to JA

    The assembly history of the nearest S0 galaxy NGC 3115 from its kinematics out to six half-light radii

    Get PDF
    Using new and archival data, we study the kinematic properties of the nearest field S0 galaxy, NGC 3115, out to 6.5\sim6.5 half-light radii (ReR_\mathrm{e}) from its stars (integrated starlight), globular clusters (GCs) and planetary nebulae (PNe). We find evidence of three kinematic regions with an inner transition at 0.2 Re\sim0.2\ R_\mathrm{e} from a dispersion-dominated bulge (Vrot/σ<1V_\mathrm{rot}/\sigma <1) to a fast-rotating disk (Vrot/σ>1V_\mathrm{rot}/\sigma >1), and then an additional transition from the disk to a slowly rotating spheroid at 22.5Re\sim2-2.5\, R_\mathrm{e}, as traced by the red GCs and PNe (and possibly by the blue GCs beyond 5Re\sim5\, R_\mathrm{e}). From comparison with simulations, we propose an assembly history in which the original progenitor spiral galaxy undergoes a gas-rich minor merger that results in the embedded kinematically cold disk that we see today in NGC 3115. At a later stage, dwarf galaxies, in mini mergers (mass-ratio << 1:10), were accreted building-up the outer slowly rotating spheroid, with the central disk kinematics largely unaltered. Additionally, we report new spectroscopic observations of a sample of ultra-compact dwarfs (UCDs) around NGC 3115 with the Keck/KCWI instrument. We find that five UCDs are inconsistent with the general rotation field of the GCs, suggesting an \textit{ex-situ} origin for these objects, i.e. perhaps the remnants of tidally stripped dwarfs. A further seven UCDs follow the GC rotation pattern, suggesting an \textit{in-situ} origin and, possibly a GC-like nature.Comment: 22 pages (including 3 pages of Appendix material), 14 figures, published in MNRA

    Complicaciones orales de la quimioterapia antineoplásica

    Get PDF
    Las complicaciones orales debidas a la quimioterapia antineoplásica pueden disminuir de forma importante el éxito terapéutico, así como la calidad de vida y la supervivencia de los paciente. En el presente trabajo describimos las principales complicaciones (mucositis, xerostomía, infecciones y hemorragia), así como las medidas adecuadas para su prevención y tratamiento, haciendo referencia a las pautas que debe seguir el odontólogo para higienizar el medio oral, realizar un correcto manejo estomatológico de estos pacientes y prevenir secuelas como la caríes

    Keck Cosmic Web Imager (KCWI) spectra of globular clusters and ultracompact dwarfs in the halo of M87

    Get PDF
    Using the Keck Cosmic Web Imager, we obtain spectra of several globular clusters (GCs), ultracompact dwarfs (UCDs), and the inner halo starlight of M87, at a similar projected galactocentric radius of ∼5 kpc. This enables us, for the first time, to apply the same stellar population analysis to the GCs, UCDs, and starlight consistently to derive ages, metallicities, and alpha-element abundances in M87. We find evidence for a dual stellar population in the M87 halo light, i.e. an ∼80 per cent component by mass that is old and metal-rich and a ∼20 per cent component that is old but metal-poor. Two red GCs share similar stellar populations to the halo light suggesting they may have formed contemporaneously with the dominant halo component. Three UCDs, and one blue GC, have similar stellar populations, with younger mean ages, lower metallicities, and near solar alpha-element abundances. Combined with literature data, our findings are consistent with the scenario that UCDs are the remnant nucleus of a stripped galaxy. We further investigate the discrepancy in the literature for M87\u27s kinematics at large radii, favouring a declining velocity dispersion profile. This work has highlighted the need for more self-consistent studies of galaxy haloes

    Scaling properties of the critical behavior in the dilute antiferromagnet Fe(0.93)Zn(0.07)F2

    Full text link
    Critical scattering analyses for dilute antiferromagnets are made difficult by the lack of predicted theoretical line shapes beyond mean-field models. Nevertheless, with the use of some general scaling assumptions we have developed a procedure by which we can analyze the equilibrium critical scattering in these systems for H=0, the random-exchange Ising model, and, more importantly, for H>0, the random-field Ising model. Our new fitting approach, as opposed to the more conventional techniques, allows us to obtain the universal critical behavior exponents and amplitude ratios as well as the critical line shapes. We discuss the technique as applied to Fe(0.93)Zn(0.07)F2. The general technique, however, should be applicable to other problems where the scattering line shapes are not well understood but scaling is expected to hold.Comment: 17 pages, 5 figure

    NGC 474 as viewed with KCWI: Diagnosing a shell galaxy

    Get PDF
    We present new spectra obtained using Keck/KCWI and perform kinematics and stellar population analyses of the shell galaxy NGC 474, from both the galaxy centre and a region from the outer shell. We show that both regions have similarly extended star formation histories although with different stellar population properties. The central region of NGC 474 is dominated by intermediate-Aged stars (8.3 ± 0.3 Gyr) with subsolar metallicity ([Z/H] =-0.24 ± 0.07 dex) while the observed shell region, which hosts a substantial population of younger stars, has a mean luminosity-weighted age of 4.0 ± 0.5 Gyr with solar metallicities ([Z/H] =-0.03 ± 0.09 dex). Our results are consistent with a scenario in which NGC 474 experienced a major to intermediate merger with a log(M/M)10(M_∗/\rm M_\odot) \sim 10 mass satellite galaxy at least 2{\sim}2 Gyr ago which produced its shell system. This work shows that the direct spectroscopic study of low-surface brightness stellar features, such as shells, is now feasible and opens up a new window to understanding galaxy formation and evolution

    COSMOS: the COsmic-ray Soil Moisture Observing System

    Get PDF
    The newly-developed cosmic-ray method for measuring area-average soil moisture at the hectometer horizontal scale is being implemented in the COsmic-ray Soil Moisture Observing System (or the COSMOS). The stationary cosmic-ray soil moisture probe measures the neutrons that are generated by cosmic rays within air and soil and other materials, moderated by mainly hydrogen atoms located primarily in soil water, and emitted to the atmosphere where they mix instantaneously at a scale of hundreds of meters and whose density is inversely correlated with soil moisture. The COSMOS has already deployed more than 50 of the eventual 500 cosmic-ray probes, distributed mainly in the USA, each generating a time series of average soil moisture over its horizontal footprint, with similar networks coming into existence around the world. This paper is written to serve a community need to better understand this novel method and the COSMOS project. We describe the cosmic-ray soil moisture measurement method, the instrument and its calibration, the design, data processing and dissemination used in the COSMOS project, and give example time series of soil moisture obtained from COSMOS probes

    PREVIRNEC A new platform for cognitive tele-rehabilitation

    Full text link
    Acquired Brain Injury (ABI), either caused by vascular or traumatic nature, is one of the most important causes for neurological disabilities. People who suffer ABI see how their quality of life decreases, due to the affection of one or some of the cognitive functions (memory, attention, language or executive functions). The traditional cognitive rehabilitation protocols are too expensive, so every help carried out in this area is justified. PREVIRNEC is a new platform for cognitive tele-rehabilitation that allows the neuropsychologist to schedule rehabilitation sessions consisted of specifically designed tasks, plus offering an additional way of communication between neuropsychologists and patients. Besides, the platform offers a knowledge management module that allows the optimization of the cognitive rehabilitation to this kind of patients
    corecore