254 research outputs found

    Oldest evidence of tool making hominins in a grassland-dominated ecosystem.

    Get PDF
    BACKGROUND: Major biological and cultural innovations in late Pliocene hominin evolution are frequently linked to the spread or fluctuating presence of C(4) grass in African ecosystems. Whereas the deep sea record of global climatic change provides indirect evidence for an increase in C(4) vegetation with a shift towards a cooler, drier and more variable global climatic regime beginning approximately 3 million years ago (Ma), evidence for grassland-dominated ecosystems in continental Africa and hominin activities within such ecosystems have been lacking. METHODOLOGY/PRINCIPAL FINDINGS: We report stable isotopic analyses of pedogenic carbonates and ungulate enamel, as well as faunal data from approximately 2.0 Ma archeological occurrences at Kanjera South, Kenya. These document repeated hominin activities within a grassland-dominated ecosystem. CONCLUSIONS/SIGNIFICANCE: These data demonstrate what hitherto had been speculated based on indirect evidence: that grassland-dominated ecosystems did in fact exist during the Plio-Pleistocene, and that early Homo was active in open settings. Comparison with other Oldowan occurrences indicates that by 2.0 Ma hominins, almost certainly of the genus Homo, used a broad spectrum of habitats in East Africa, from open grassland to riparian forest. This strongly contrasts with the habitat usage of Australopithecus, and may signal an important shift in hominin landscape usage

    Synchronizing Allelic Effects of Opposing Quantitative Trait Loci Confirmed a Major Epistatic Interaction Affecting Acute Lung Injury Survival in Mice

    Get PDF
    Increased oxygen (O2) levels help manage severely injured patients, but too much for too long can cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS) and even death. In fact, continuous hyperoxia has become a prototype in rodents to mimic salient clinical and pathological characteristics of ALI/ARDS. To identify genes affecting hyperoxia-induced ALI (HALI), we previously established a mouse model of differential susceptibility. Genetic analysis of backcross and F2 populations derived from sensitive (C57BL/6J; B) and resistant (129X1/SvJ; X1) inbred strains identified five quantitative trait loci (QTLs; Shali1-5) linked to HALI survival time. Interestingly, analysis of these recombinant populations supported opposite within-strain effects on survival for the two major-effect QTLs. Whereas Shali1 alleles imparted the expected survival time effects (i.e., X1 alleles increased HALI resistance and B alleles increased sensitivity), the allelic effects of Shali2 were reversed (i.e., X1 alleles increased HALI sensitivity and B alleles increased resistance). For in vivo validation of these inverse allelic effects, we constructed reciprocal congenic lines to synchronize the sensitivity or resistance alleles of Shali1 and Shali2 within the same strain. Specifically, B-derived Shali1 or Shali2 QTL regions were transferred to X1 mice and X1-derived QTL segments were transferred to B mice. Our previous QTL results predicted that substituting Shali1 B alleles onto the resistant X1 background would add sensitivity. Surprisingly, not only were these mice more sensitive than the resistant X1 strain, they were more sensitive than the sensitive B strain. In stark contrast, substituting the Shali2 interval from the sensitive B strain onto the X1 background markedly increased the survival time. Reciprocal congenic lines confirmed the opposing allelic effects of Shali1 and Shali2 on HALI survival time and provide unique models to identify their respective quantitative trait genes and to critically assess the apparent bidirectional epistatic interactions between these major-effect loci

    Perceived major experiences of discrimination, ethnic group, and risk of psychosis in a six-country case-control study

    Get PDF
    BACKGROUND: Perceived discrimination is associated with worse mental health. Few studies have assessed whether perceived discrimination (i) is associated with the risk of psychotic disorders and (ii) contributes to an increased risk among minority ethnic groups relative to the ethnic majority. METHODS: We used data from the European Network of National Schizophrenia Networks Studying Gene-Environment Interactions Work Package 2, a population-based case-control study of incident psychotic disorders in 17 catchment sites across six countries. We calculated odds ratios (OR) and 95% confidence intervals (95% CI) for the associations between perceived discrimination and psychosis using mixed-effects logistic regression models. We used stratified and mediation analyses to explore differences for minority ethnic groups. RESULTS: Reporting any perceived experience of major discrimination (e.g. unfair treatment by police, not getting hired) was higher in cases than controls (41.8% v. 34.2%). Pervasive experiences of discrimination (≥3 types) were also higher in cases than controls (11.3% v. 5.5%). In fully adjusted models, the odds of psychosis were 1.20 (95% CI 0.91-1.59) for any discrimination and 1.79 (95% CI 1.19-1.59) for pervasive discrimination compared with no discrimination. In stratified analyses, the magnitude of association for pervasive experiences of discrimination appeared stronger for minority ethnic groups (OR = 1.73, 95% CI 1.12-2.68) than the ethnic majority (OR = 1.42, 95% CI 0.65-3.10). In exploratory mediation analysis, pervasive discrimination minimally explained excess risk among minority ethnic groups (5.1%). CONCLUSIONS: Pervasive experiences of discrimination are associated with slightly increased odds of psychotic disorders and may minimally help explain excess risk for minority ethnic groups

    Terfenadine induces apoptosis and autophagy in melanoma cells through ROS-dependent and -independent mechanisms

    Get PDF
    Previously we found that terfenadine, an H1 histamine receptor antagonist, acts as a potent apoptosis inducer in melanoma cells through modulation of Ca2+ homeostasis. In this report, focusing our attention on the apoptotic mechanisms activated by terfenadine, we show that this drug can potentially activate distinct intrinsic signaling pathways depending on culture conditions. Serum-deprived conditions enhance the cytotoxic effect of terfenadine and caspase-4 and -2 are activated upstream of caspase-9. Moreover, although we found an increase in ROS levels, the apoptosis was ROS independent. Conversely, terfenadine treatment in complete medium induced ROS-dependent apoptosis. Caspase-4, -2, and -9 were simultaneously activated and p73 and Noxa induction were involved. ROS inhibition prevented p73 and Noxa expression but not p53 and p21 expression, suggesting a role for Noxa in p53-independent apoptosis in melanoma cells. Finally, we found that terfenadine induced autophagy, that can promote apoptosis. These findings demonstrate the great potential of terfenadine to kill melanoma cells through different cellular signaling pathways and could contribute to define new therapeutic strategies in melanoma

    Discovery and progress in our understanding of the regulated secretory pathway in neuroendocrine cells

    Get PDF
    In this review we start with a historical perspective beginning with the early morphological work done almost 50 years ago. The importance of these pioneering studies is underscored by our brief summary of the key questions addressed by subsequent research into the mechanism of secretion. We then highlight important advances in our understanding of the formation and maturation of neuroendocrine secretory granules, first using in vitro reconstitution systems, then most recently biochemical approaches, and finally genetic manipulations in vitro and in vivo

    Dissection of a QTL Hotspot on Mouse Distal Chromosome 1 that Modulates Neurobehavioral Phenotypes and Gene Expression

    Get PDF
    A remarkably diverse set of traits maps to a region on mouse distal chromosome 1 (Chr 1) that corresponds to human Chr 1q21–q23. This region is highly enriched in quantitative trait loci (QTLs) that control neural and behavioral phenotypes, including motor behavior, escape latency, emotionality, seizure susceptibility (Szs1), and responses to ethanol, caffeine, pentobarbital, and haloperidol. This region also controls the expression of a remarkably large number of genes, including genes that are associated with some of the classical traits that map to distal Chr 1 (e.g., seizure susceptibility). Here, we ask whether this QTL-rich region on Chr 1 (Qrr1) consists of a single master locus or a mixture of linked, but functionally unrelated, QTLs. To answer this question and to evaluate candidate genes, we generated and analyzed several gene expression, haplotype, and sequence datasets. We exploited six complementary mouse crosses, and combed through 18 expression datasets to determine class membership of genes modulated by Qrr1. Qrr1 can be broadly divided into a proximal part (Qrr1p) and a distal part (Qrr1d), each associated with the expression of distinct subsets of genes. Qrr1d controls RNA metabolism and protein synthesis, including the expression of ∼20 aminoacyl-tRNA synthetases. Qrr1d contains a tRNA cluster, and this is a functionally pertinent candidate for the tRNA synthetases. Rgs7 and Fmn2 are other strong candidates in Qrr1d. FMN2 protein has pronounced expression in neurons, including in the dendrites, and deletion of Fmn2 had a strong effect on the expression of few genes modulated by Qrr1d. Our analysis revealed a highly complex gene expression regulatory interval in Qrr1, composed of multiple loci modulating the expression of functionally cognate sets of genes

    Analysis of the CCR5 gene coding region diversity in five South American populations reveals two new non-synonymous alleles in Amerindians and high CCR5*D32 frequency in Euro-Brazilians

    Get PDF
    The CC chemokine receptor 5 (CCR5) molecule is an important co-receptor for HIV. The effect of the CCR5*D32 allele in susceptibility to HIV infection and AIDS disease is well known. Other alleles than CCR5*D32 have not been analysed before, neither in Amerindians nor in the majority of the populations all over the world. We investigated the distribution of the CCR5 coding region alleles in South Brazil and noticed a high CCR5*D32 frequency in the Euro-Brazilian population of the Paraná State (9.3%), which is the highest thus far reported for Latin America. The D32 frequency is even higher among the Euro-Brazilian Mennonites (14.2%). This allele is uncommon in Afro-Brazilians (2.0%), rare in the Guarani Amerindians (0.4%) and absent in the Kaingang Amerindians and the Oriental-Brazilians. R223Q is common in the Oriental-Brazilians (7.7%) and R60S in the Afro-Brazilians (5.0%). A29S and L55Q present an impaired response to β-chemokines and occurred in Afro- and Euro-Brazilians with cumulative frequencies of 4.4% and 2.7%, respectively. Two new non-synonymous alleles were found in Amerindians: C323F (g.3729G > T) in Guarani (1.4%) and Y68C (g.2964A > G) in Kaingang (10.3%). The functional characteristics of these alleles should be defined and considered in epidemiological investigations about HIV-1 infection and AIDS incidence in Amerindian populations
    corecore