60 research outputs found

    The Synthesis of Kynurenic Acid in Mammals: An Updated Kynurenine Aminotransferase Structural KATalogue

    Get PDF
    Kynurenic acid (KYNA) is a bioactive compound that is produced along the kynurenine pathway (KP) during tryptophan degradation. In a few decades, KYNA shifted from being regarded a poorly characterized by-product of the KP to being considered a main player in many aspects of mammalian physiology, including the control of glutamatergic and cholinergic synaptic transmission, and the coordination of immunomodulation. The renewed attention being paid to the study of KYNA homeostasis is justified by the discovery of selective and potent inhibitors of kynurenine aminotransferase II, which is considered the main enzyme responsible for KYNA synthesis in the mammalian brain. Since abnormally high KYNA levels in the central nervous system have been associated with schizophrenia and cognitive impairment, these inhibitors promise the development of novel anti-psychotic and pro-cognitive drugs. Here, we summarize the currently available structural information on human and rodent kynurenine aminotransferases (KATs) as the result of global efforts aimed at describing the full complement of mammalian isozymes. These studies highlight peculiar features of KATs that can be exploited for the development of isozyme-specific inhibitors. Together with the optimization of biochemical assays to measure individual KAT activities in complex samples, this wealth of knowledge will continue to foster the identification and rational design of brain penetrant small molecules to attenuate KYNA synthesis, i.e., molecules capable of lowering KYNA levels without exposing the brain to the harmful withdrawal of KYNA-dependent neuroprotective actions

    Functional characterization of the Mycobacterium tuberculosis zinc metallopeptidase Zmp1 and identification of potential substrates

    Get PDF
    Zinc metallopeptidases of bacterial pathogens are widely distributed virulence factors and represent promising pharmacological targets. In this work, we have characterized Zmp1, a zinc metallopeptidase identified as a virulence factor of Mycobacterium tuberculosis and belonging to the neprilysin (NEP; M13) family, whose X-ray structure has been recently solved. Interestingly, this enzyme shows an optimum activity toward a fluorogenic substrate at moderately acidic pH values (i.e., 6.3), which corresponds to those reported for the Mtb phagosome where this enzyme should exert its pathological activity. Substrate specificity of Zmp1 was investigated by screening a peptide library. Several sequences derived from biologically relevant proteins were identified as possible substrates, including the neuropeptides bradykinin, neurotensin, and neuropeptide FF. Further, subsequences of other small bioactive peptides were found among most frequently cleaved sites, e.g., apelin-13 and substance P. We determined the specific cleavage site within neuropeptides by mass spectrometry, observing that hydrophobic amino acids, mainly phenylalanine and isoleucine, are overrepresented at position P1â€Č. In addition, the enzymatic mechanism of Zmp1 toward these neuropeptides has been characterized, displaying some differences with respect to the synthetic fluorogenic substrate and indicating that the enzyme adapts its enzymatic action to different substrate

    Expanding Benzoxazole-Based Inosine 5?-Monophosphate Dehydrogenase (IMPDH) Inhibitor Structure–Activity As Potential Antituberculosis Agents

    Get PDF
    New drugs and molecular targets are urgently needed to address the emergence and spread of drug-resistant tuberculosis. Mycobacterium tuberculosis (Mtb) inosine 5?-monophosphate dehydrogenase 2 (MtbIMPDH2) is a promising yet controversial potential target. The inhibition of MtbIMPDH2 blocks the biosynthesis of guanine nucleotides, but high concentrations of guanine can potentially rescue the bacteria. Herein we describe an expansion of the structure–activity relationship (SAR) for the benzoxazole series of MtbIMPDH2 inhibitors and demonstrate that minimum inhibitory concentrations (MIC) of ?1 ?M can be achieved. The antibacterial activity of the most promising compound, 17b (Q151), is derived from the inhibition of MtbIMPDH2 as demonstrated by conditional knockdown and resistant strains. Importantly, guanine does not change the MIC of 17b, alleviating the concern that guanine salvage can protect Mtb in vivo. These findings suggest that MtbIMPDH2 is a vulnerable target for tuberculosis

    ï»żNotulae to the Italian alien vascular flora: 12

    Get PDF
    In this contribution, new data concerning the distribution of vascular flora alien to Italy are presented. It includes new records, confirmations, exclusions, and status changes for Italy or for Italian administrative regions. Nomenclatural and distribution updates published elsewhere are provided as Suppl. material 1

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNetÂź convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNetÂź model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
    • 

    corecore