40 research outputs found

    West Nile Virus Encephalitis in Haematological Setting: Report of Two Cases and a Brief Review of the Literature

    Get PDF
    West Nile virus is a zoonotic agent causing life-threatening encephalitis in a proportion of infected patients. Older age, immunosuppression, and mutations in specific host genes (e.g., CCR5 delta-32 mutation) predispose to neuroinvasive infection. We report on two cases of severe West Nile encephalitis in recently-treated, different-aged, chronic lymphocytic leukemia patients. Both patients developed high-grade fever associated with severe neurological impairment. The younger one harboured germ-line CCR5 delta-32 mutation, which might have played a role in the pathogenesis of its neuroinvasive manifestations

    The Evolving Knowledge on T and NK Cells in Classic Hodgkin Lymphoma: Insights into Novel Subsets Populating the Immune Microenvironment

    Get PDF
    Classic Hodgkin lymphoma (cHL) is a unique lymphoid neoplasm characterized by extensive immune infiltrates surrounding rare malignant Hodgkin Reed-Sternberg (HRS) cells. Different subsets of T and NK cells have long been recognized in the cHL microenvironment, yet their distinct contribution to disease pathogenesis has remained enigmatic. Very recently, novel platforms for high dimensional analysis of immune cells, such as single-cell RNA sequencing and mass cytometry, have revealed unanticipated insights into the composition of T- and NK-cell compartments in cHL. Advances in imaging techniques have better defined specific T-helper subpopulations physically interacting with neoplastic cells. In addition, the identification of novel cytotoxic subsets with an exhausted phenotype, typically enriched in cHL milieu, is shedding light on previously unrecognized immune evasion mechanisms. This review examines the immunological features and the functional properties of T and NK subsets recently identified in the cHL microenvironment, highlighting their pathological interplay with HRS cells. We also discuss how this knowledge can be exploited to predict response to immunotherapy and to design novel strategies to improve PD-1 blockade efficacy

    Expression of μ-protocadherin is negatively regulated by the activation of the β-catenin signaling pathway in normal and cancer colorectal enterocytes.

    Get PDF
    Mu-protocadherin (MUCDHL) is an adhesion molecule predominantly expressed by colorectal epithelial cells which is markedly downregulated upon malignant transformation. Notably, treatment of colorectal cancer (CRC) cells with mesalazine lead to increased expression of MUCDHL, and is associated with sequestration of β-catenin on the plasma membrane and inhibition of its transcriptional activity. To better characterize the causal relationship between β-catenin and MUCDHL expression, we performed various experiments in which CRC cell lines and normal colonic organoids were subjected to culture conditions inhibiting (FH535 treatment, transcription factor 7-like 2 siRNA inactivation, Wnt withdrawal) or stimulating (LiCl treatment) β-catenin activity. We show here that expression of MUCDHL is negatively regulated by functional activation of the β-catenin signaling pathway. This finding was observed in cell culture systems representing conditions of physiological stimulation and upon constitutive activation of β-catenin in CRC. The ability of MUCDHL to sequester and inhibit β-catenin appears to provide a positive feedback enforcing the effect of β-catenin inhibitors rather than serving as the primary mechanism responsible for β-catenin inhibition. Moreover, MUCDHL might have a role as biomarker in the development of CRC chemoprevention drugs endowed with β-catenin inhibitory activity

    BID and the α-bisabolol-triggered cell death program: converging on mitochondria and lysosomes

    Get PDF
    \u3b1-Bisabolol (BSB) is a plant-derived sesquiterpene alcohol able to trigger regulated cell death in transformed cells, while deprived of the general toxicity in several mouse models. Here, we investigated the involvement of lysosomal and mitochondrial compartments in the cytotoxic effects of BSB, with a specific focus on the BH3-only activator protein BID. We found that BSB particularly accumulated in cancer cell lines, displaying a higher amount of lipid rafts as compared to normal blood cells. By means of western blotting and microscopy techniques, we documented rapid BSB-induced BID translocation to lysosomes and mitochondria, both of them becoming dysfunctional. Lysosomal membranes were permeabilized, thus blocking the cytoprotective autophagic flux and provoking cathepsin B leakage into the cytosol. Multiple flow cytometry-based experiments demonstrated the loss of mitochondrial membrane potential due to pore formation across the lipid bilayer. These parallel events converged on neoplastic cell death, an outcome significantly prevented by BID knockdown. Therefore, BSB promoted BID redistribution to the cell death executioner organelles, which in turn activated anti-autophagic and proapoptotic mechanisms. This is an example of how xenohormesis can be exploited to modulate basic cellular programs in cancer

    CXCL12 and [N33A]CXCL12 in 5637 and HeLa Cells: Regulating HER1 Phosphorylation via Calmodulin/Calcineurin

    Get PDF
    In the human neoplastic cell lines 5637 and HeLa, recombinant CXCL12 elicited, as expected, downstream signals via both G-protein-dependent and \u3b2-arrestin-dependent pathways responsible for inducing a rapid and a late wave, respectively, of ERK1/2 phosphorylation. In contrast, the structural variant [N33A]CXCL12 triggered no \u3b2-arrestin-dependent phosphorylation of ERK1/2, and signaled via G protein-dependent pathways alone. Both CXCL12 and [N33A]CXCL12, however, generated signals that transinhibited HER1 phosphorylation via intracellular pathways. 1) Prestimulation of CXCR4/HER1-positive 5637 or HeLa cells with CXCL12 modified the HB-EGF-dependent activation of HER1 by delaying the peak phosphorylation of tyrosine 1068 or 1173. 2) Prestimulation with the synthetic variant [N33A]CXCL12, while preserving CXCR4-related chemotaxis and CXCR4 internalization, abolished HER1 phosphorylation. 3) In cells knockdown of \u3b2-arrestin 2, CXCL12 induced a full inhibition of HER1 like [N33A]CXCL12 in non-silenced cells. 4) HER1 phosphorylation was restored as usual by inhibiting PCK, calmodulin or calcineurin, whereas the inhibition of CaMKII had no discernable effect. We conclude that both recombinant CXCL12 and its structural variant [N33A]CXCL12 may transinhibit HER1 via G-proteins/calmodulin/calcineurin, but [N33A]CXCL12 does not activate \u3b2-arrestin-dependent ERK1/2 phosphorylation and retains a stronger inhibitory effect. Therefore, we demonstrated that CXCL12 may influence the magnitude and the persistence of signaling downstream of HER1 in turn involved in the proliferative potential of numerous epithelial cancer. In addition, we recognized that [N33A]CXCL12 activates preferentially G-protein-dependent pathways and is an inhibitor of HER1

    CXCL12 and [N33A]CXCL12 in 5637 and HeLa Cells: Regulating HER1 Phosphorylation via Calmodulin/Calcineurin

    Get PDF
    In the human neoplastic cell lines 5637 and HeLa, recombinant CXCL12 elicited, as expected, downstream signals via both G-protein-dependent and β-arrestin-dependent pathways responsible for inducing a rapid and a late wave, respectively, of ERK1/2 phosphorylation. In contrast, the structural variant [N33A]CXCL12 triggered no β-arrestin-dependent phosphorylation of ERK1/2, and signaled via G protein-dependent pathways alone. Both CXCL12 and [N33A]CXCL12, however, generated signals that transinhibited HER1 phosphorylation via intracellular pathways. 1) Prestimulation of CXCR4/HER1-positive 5637 or HeLa cells with CXCL12 modified the HB-EGF-dependent activation of HER1 by delaying the peak phosphorylation of tyrosine 1068 or 1173. 2) Prestimulation with the synthetic variant [N33A]CXCL12, while preserving CXCR4-related chemotaxis and CXCR4 internalization, abolished HER1 phosphorylation. 3) In cells knockdown of β-arrestin 2, CXCL12 induced a full inhibition of HER1 like [N33A]CXCL12 in non-silenced cells. 4) HER1 phosphorylation was restored as usual by inhibiting PCK, calmodulin or calcineurin, whereas the inhibition of CaMKII had no discernable effect. We conclude that both recombinant CXCL12 and its structural variant [N33A]CXCL12 may transinhibit HER1 via G-proteins/calmodulin/calcineurin, but [N33A]CXCL12 does not activate β-arrestin-dependent ERK1/2 phosphorylation and retains a stronger inhibitory effect. Therefore, we demonstrated that CXCL12 may influence the magnitude and the persistence of signaling downstream of HER1 in turn involved in the proliferative potential of numerous epithelial cancer. In addition, we recognized that [N33A]CXCL12 activates preferentially G-protein-dependent pathways and is an inhibitor of HER1

    A Human Protein Interaction Network Shows Conservation of Aging Processes between Human and Invertebrate Species

    Get PDF
    We have mapped a protein interaction network of human homologs of proteins that modify longevity in invertebrate species. This network is derived from a proteome-scale human protein interaction Core Network generated through unbiased high-throughput yeast two-hybrid searches. The longevity network is composed of 175 human homologs of proteins known to confer increased longevity through loss of function in yeast, nematode, or fly, and 2,163 additional human proteins that interact with these homologs. Overall, the network consists of 3,271 binary interactions among 2,338 unique proteins. A comparison of the average node degree of the human longevity homologs with random sets of proteins in the Core Network indicates that human homologs of longevity proteins are highly connected hubs with a mean node degree of 18.8 partners. Shortest path length analysis shows that proteins in this network are significantly more connected than would be expected by chance. To examine the relationship of this network to human aging phenotypes, we compared the genes encoding longevity network proteins to genes known to be changed transcriptionally during aging in human muscle. In the case of both the longevity protein homologs and their interactors, we observed enrichments for differentially expressed genes in the network. To determine whether homologs of human longevity interacting proteins can modulate life span in invertebrates, homologs of 18 human FRAP1 interacting proteins showing significant changes in human aging muscle were tested for effects on nematode life span using RNAi. Of 18 genes tested, 33% extended life span when knocked-down in Caenorhabditis elegans. These observations indicate that a broad class of longevity genes identified in invertebrate models of aging have relevance to human aging. They also indicate that the longevity protein interaction network presented here is enriched for novel conserved longevity proteins

    Chemoprevention of colorectal cancer

    No full text
    In the present invention, a new combination is disclosed comprising (i) 5 -aminosalicylic acid (5 -ASA) or a derivative thereof, or a pharmacologically acceptable salt thereof, and (ii) a group D vitamin, a derivative thereof, a metabolite or analogue, for use in the prevention and/or treatment of colorectal cancer (CRC). A further aspect of the invention is directed to pharmaceutical compositions comprising said combination together with at least one physiologically acceptable excipient and the use thereof in the prevention and/or in the treatment of the colorectal cancer

    A Data-Based Approach for the Prediction of Stuck-Pipe Events in Oil Drilling Operations

    Get PDF
    Stuck-pipe phenomena can have disastrous effects on drilling performance, with outcomes that may range from time delays to loss of expensive machinery. In this work, we develop three indicators based on the mudlog data, which aim to detect three different physical phenomena associated to the insurgence of a sticking. In particular, two indices target respectively the detection of translational and rotational motion issues, while the third index concerns the wellbore pressure. A statistical model that relates these features with the documented stuck-pipe events is then developed using machine learning. The resulting model takes the form of a depth-based map of the risk of incurring into a stuck-pipe, updated in real time. Preliminary experimental results on the available dataset indicate that the use of the proposed model and indicators can help mitigate the stuck-pipe issue
    corecore