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A data-based approach for the prediction of
stuck-pipe events in oil drilling operations
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Abstract—Stuck-pipe phenomena can have disastrous effects
on drilling performance, with outcomes that may range from time
delays to loss of expensive machinery. In this work, we develop
three indicators based on the mudlog data, which aim to detect
three different physical phenomena associated to the insurgence
of a sticking. In particular, two indices target respectively the
detection of translational and rotational motion issues, while the
third index concerns the wellbore pressure. A statistical model
that relates these features with the documented stuck-pipe events
is then developed using machine learning. The resulting model
takes the form of a depth-based map of the risk of incurring into a
stuck-pipe, updated in real time. Preliminary experimental results
on the available dataset indicate that the use of the proposed
model and indicators can help mitigate the stuck-pipe issue.

Index Terms—Oil&Gas, Drilling, Stuck-pipe, Detection, Pre-
diction, Rare events.

I. INTRODUCTION

DRILLING is a costly and complex process that may be
slowed down or jeopardized by various adverse events,

due to well problems (such as circulation losses, stickings,
fluid influx, etc.), rig failures, downhole or surface equipment
failures, etc. In particular, the occurrence of sticking (or stuck-
pipe) phenomena may ultimately result in catastrophic out-
comes entailing pipe breakage, the loss of expensive downhole
equipment, and a considerable delay in the drilling operations.
A sticking can be caused by various different physical phe-
nomena and occurs when the vertical motion or the rotation
of the drilling pipe is impeded. Various actions can be exerted
by the operator in an attempt to unblock the Bottom Hole
Assembly (BHA), at the cost of a delay in the drilling. In the
most unfortunate cases, the BHA cannot be freed and must be
abandoned, and the drilling is later resumed along a different
trajectory.

The prediction of such events is therefore considered a
primary necessity to aid the drilling team in the decision
making process, so that appropriate countermeasures can be
put in effect before the situation slips out of hand. The
problem is very challenging due to the hybrid nature of the
drilling process (which consists of different activities), the
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variability of geological conditions, the combined occurrence
of adverse events, and the availability of indirect sources
of information regarding the occurrence of stickings in the
form of measurements associated to the functioning of surface
equipment.

Numerous works have appeared in the recent scientific
literature concerning the application of data analysis to tasks
related to the drilling process (see e.g. [1], [2], [3]). Many
works focus on the prediction and optimization of the rate of
penetration (ROP) using machine learning methods, see e.g.
[4], [5], [6], [7]. Others consider the task of predicting the
bottom hole pressure, see e.g. [8], [9], [10]. In [11] the task
of detecting and recognizing a kick is addressed. In [12] a
clustering method is employed to recognize anomalies in the
mud log data. Finally, some works are concerned with the
prediction of stick-slip phenomena, as [13].

In this work we first develop three indicators, associated to
different physical phenomena, aimed at recognizing stickings
and their precursor events. We then use these indicators
(as well as other mudlog raw signals) to learn a statistical
model that can anticipate the occurrence of stuck-pipe events.
Various data are available for this task, namely timelog data
annotated by the drilling operators and mudlog data collecting
measurements from the surface equipment. Lithology data are
typically available only a posteriori, and therefore cannot be
exploited for prediction purposes.

Timelog data are crucial in that they contain the opera-
tors’ assessments regarding all the issues encountered during
drilling. The processing of these data provides the ground
truth for the detection of the sticking events. Unfortunately,
the consistency of these data is sometimes questionable,
due to the subjectivity of the operators’ evaluations. As a
consequence minor or brief sticking problems may not be
reported as such, and other well problems may be reported
mistakenly as sticking events. Furthermore, the annotations
are not precisely aligned in time with the data, as required for
the data processing task.

The rest of this paper is organized as follows. Section
II provides a brief description of the mudlog variables and
analyzes the sticking condition in terms of them. Sections III-
V introduce the three indicators, while Section VI provides
a brief outline of the statistical model that exploits them to
predict the sticking events. Some concluding remarks are given
in Section VII.
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II. DATA-BASED CHARACTERIZATION OF THE STUCK-PIPE
CONDITIONS

A. Mudlog data description and analysis

The mudlog reports the measurements of several variables
related to the drilling process (some variables are actually not
measured, but computed from other measurements), sampled
every 5 seconds. Various variables related to the drilling depth
are available. In this work we consider the following mudlog
variables:

• DBTM - bit depth along the drilling direction
• BPOS - position (height) of the traveling block, which

supports the drill pipe
• HKLA - (average) tension on the cable from the draw-

works (hook load)
• TQA - (average) rotary torque applied to the drill string

(taken at the rotary table or at the top drive motor cable)
• RPMA - (average) rotary speed
• SPMT - total pump stroke rate
• SPPA - (average) pressure of the mud on the stand pipe

B. The stuck-pipe condition

A sticking occurs when the drillstring cannot be neither
rotated nor moved along the axis of the wellbore. A pipe is
considered stuck if it cannot be freed from the hole without
damaging the pipe, and without exceeding the drilling rig’s
maximum allowed hook load. Pipe sticking typically occurs
either because of differential pressure issues or by mechanical
blocking. In the first case, if the pressure in the annulus
exceeds that in the formation being drilled, the drillstring is
pulled against the wall and held against it. A relatively low
differential pressure applied over a large working area can
suffice to stick the pipe. In high-angle and horizontal wells,
the gravitational force also plays a role in extending the contact
between the drillstring and the formation.

Conversely, the notion of mechanical sticking describes
the limiting or prevention of motion of the drillstring for
other reasons, e.g. the presence of junk in the hole, wellbore
geometry anomalies, keyseats1, the formation of packoff from
poor hole-cleaning (the cuttings settle and eventually pack
around the drill string), unfavorable properties of the drilled
formation.

Early signals of a poor hole-cleaning conditions can be
found in an erratic torque (the string is repeatedly getting
stuck in the cuttings, wound up and spun free), an unexplained
increase in the bottom hole pressure (which may be associated
to a tight spot with packings causing flow restrictions further
up the annulus), or an unexpected hook load (if the drill string
rests on a tight packing the hook load is lower than anticipated)
[1]. Preventing stuck-pipes requires a close monitoring of early
warning signs, such as increases in torque and drag, excessive
cuttings loading, tight spots while tripping, loss of circulation
while drilling.

1A keyseat is a small-diameter channel worn into the side of a larger
diameter wellbore, in which the drillstring may fit too tightly and ultimately
get stuck.

In terms of the signals available in the mudlog the following
phenomena –though not necessarily all at the same time– are
often observed in connection with a sticking event:

1) BPOS presents anomalies with respect to its previous
pattern.

2) DBTM is either constant or displays high frequency
oscillations of small amplitude (due to the operator’s
attempt to disengage the stuck drill string).

3) HKLA increases and/or oscillates.
4) RPMA decreases or goes to 0 (it displays downward

spikes).
5) TQA increases (and displays upward spikes).
6) SPPA increases (due to the formation of some obstacle

to the mud flow).
Not all these phenomena appear together in sticking events,

at least to the recollection of the authors, but at least three
typical patterns are observed. The first pattern explains the
physical phenomenon of the sticking regarding the impairment
of motion along the well main axis and is therefore associated
to the depth variables: DBTM and BPOS are either constant
or have small oscillations, and HKLA oscillates following
BPOS (since the pipe is stuck, acting on BPOS reflects
directly on the load sensed on the hook). The second pattern is
associated with difficulties in the rotational motion of the drill
string and is found in drilling/reaming/backreaming operations
(rotation must be on): TQA increases abnormally (possibly
with spikes) while RPMA falls. Notice that RPMA can also
be zero for legitimate reasons (simply because the rotation
is set off). At the same time TQA spikes associated to the
mounting of stands should be discarded. A third important
phenomenon related to sticking regards the pressure balance
in the wellbore and involves the pressure and pump flow
variables. In particular, unexpected surges in SPPA, that are
not justified by variations of the mud flow, may indicate the
formation of a pack off due to poor hole cleaning, a condition
which may degenerate to a sticking.

III. Dlin: A STICKING INDICATOR BASED ON THE BPOS
AND HKLA SIGNALS

During sticking events there are large time portions where
the BPOS and HKLA dynamics are extremely well cor-
related in high frequency (see Figures 1-2). Indeed, if the
motion along the borehole axis is impaired and the drillstring is
blocked, every pull exerted by moving up the block produces
a corresponding increase of the load measured at the hook,
and viceversa. On the other hand, when the drillstring is free,
the upwards and downwards motions of the block do not
significantly affect the hook load.

This behavior of the BPOS and HKLA signals motivates
the use of a correlation index for sticking detection and pos-
sibly for sticking anticipation, denoted Dlin in the following.
Indeed, in difficult spots the string may get near to blocking
conditions, with analogous results on BPOS and HKLA,
though to a smaller extent. The intensity and frequency of
these events may be used as an anticipatory signal of the
sticking.

The high frequency behavior of the BPOS and HKLA
signals is captured by taking the differences with respect to
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Figure 1. Sticking example 1: detail of the BPOS and HKLA signals.
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Figure 2. Sticking example 2: detail of the BPOS and HKLA signals.

smoothed version of the same signals obtained by a classical
rolling median approach. More precisely, a baseline of each
signal is computed with a rolling median with a window of 35
seconds, resulting in BPOSmedian and HKLAmedian. Then,
the high frequency components are computed as the differ-
ences between each signal and the respective baseline, yielding
BPOSdiff = BPOSraw−BPOSmedian and HKLAdiff =
HKLAraw − HKLAmedian. Then, the correlation between
these two signals is computed with a rolling window approach,
e.g. over rolling windows of 60 samples (5 minutes). Prior to
calculating the correlation, the HKLAdiff signal is linearly
detrended in the 5 minute window to avoid capturing unwanted
low frequency correlations in the correlation index.

The raw correlation signal takes a relatively high value
in correspondence to sticking events, but also generates a
significant number of spurious events (see Figure 3, bottom).
These false alarms are mostly connected with stand change
operations (especially during tripping). Various data-based
rules can be employed to detect stand changes. Since the
drillstring is clamped during a stand change, with a significant
reduction of the load perceived at the hook, a conservative
simple rule consists in removing the samples associated to
a HKLA value less than a given threshold (depending on
the length and weight of the drillstring). This removes the
data corresponding to stand changes as well as some data
portions corresponding to tripping operations, when only a
small portion of the drillstring is inserted in the hole. This
is not necessarily a problem, given that the initial part of the

borehole is cased and no sticking problem is expected to occur
inside the casing. For example, in the considered dataset the
HKLA is generally over 200 tons, and using a threshold of
e.g. HKLA ≤ 150 results in an effective elimination of all the
problematic data. A good rule of thumb for the sizing of this
threshold would be to use the HKLA value corresponding to
the drillstring covering the cased portion of the borehole.

Finally, for ease of interpretation, the correlation values
(which range up to 1) can be discretized in various levels of
alarm. In the following, we simply discarded all index values
lower than 0.25 and issued an alarm otherwise.

In summary, the following steps are required to calculate
the Dlin index:

1) Filter out stand change operations.
2) Take a rolling median of BPOS and HKLA with a

window of 35 seconds.
3) Calculate BPOSdiff = BPOSraw −BPOSmedian and

HKLAdiff = HKLAraw −HKLAmedian.
4) For each time step k, consider the window from k−L+1

to k, where L = 60 is the length of the rolling window,
and compute the correlation between BPOSdiff and a
linearly detrended version of HKLAdiff over the said
window.

5) Set Dlin(k) = 1 if the previous value is greater than or
equal to 0.25, and 0 otherwise.

Figure 3 displays the performance of the Dlin on the data
of a drilling process with 4 sticking episodes. The pre-filtering
operation indeed removes many false alarms, that can be
mostly ascribed to stand change operations. The remaining
alarms are associated to the documented stickings, and to
other minor non-catastrophic events. The latter are often
associated with difficult spots encountered during the process,
and deemed not sufficiently severe to be reported officially
as stickings in the timelog. This indicates that the information
provided by Dlin could be possibly used as an anticipation for
problems in drilling. Notice in particular the frequency of such
events just before the fourth sticking, which may be employed
to anticipate it.

IV. Drot: A STICKING INDICATOR BASED ON THE TQA
AND RPMA SIGNALS

The second physical phenomenon we considered is related
to the rotational movement of the drill string. Intuitively, when
resistance to rotation is encountered the RPMA signal is
expected to drop and at the same time a large value of TQA
will be experienced. This phenomenon is emphasized during
stickings where rotation can be completely blocked. As done
in the previous section, let’s take a closer look at the TQA
and RPMA signals during sticking events (see Figures 4-5).

As expected in both cases there are various time intervals
in which the RPMA signal drops and at the same time there
is a surge in TQA, which is otherwise at a relatively low
value. Notice that the duration of such time intervals can vary
quite a lot: in the first sticking the events are relatively short,
while a larger period is observed in the second case around
21:00. Apparently, in this case, the operator applied a sustained
rotation to the drillstring to wear out the resistance (indeed,
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Figure 3. Detector Dlin as a function of time. From top to bottom: DBTM , HKLA, BPOS, detector (raw correlation in blue, correlation values higher
than 0.25 in red, Dlin in magenta). The orange circles identify the locations of the documented stickings.

the TQA slowly drops to lower values). Notice that afterwards
(slightly after 21:00) the operator has inserted a delimiter to
the maximum torque (see the saturations at 1000).
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Figure 4. Sticking example 1: detail of the TQA and RPMA signals.

The proposed index, denoted Drot in the sequel, is based on
the ratio between TQA and RPMA, which takes large values
when the former variable is large while RPMA is small, a
typically observed condition in tight spots and stickings2. To
avoid a division by zero, RPMA is saturated from below
by a small positive value. Notice that RPMA can be zero
for legitimate reasons as well (when the operator switches
off the rotation), but in this case TQA is zero as well (and
consequently also Drot). Conversely, the TQA can have large
spikes without this representing a problem, as happens during
stand changes. For these reasons, as done for Dlin, the stand

2For appropriate generalization of this index to other well datasets, a
normalization is in order for both variables.
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Figure 5. Sticking example 2: detail of the TQA and RPMA signals.

change operations must be removed prior to the calculation
of the index. In summary, the processing steps required to
calculate the Drot index are listed below:

1) Filter out stand change operations.
2) Calculate the ratio TQA(k)

max(RPMA(k),1) .
3) Count the number samples of the ratio exceeding 1000

over a window of 20 samples (from k − 20 + 1 to k) .
4) Set Drot(k) = 1 if at the previous count reaches a value

of 18 (i.e., 90% of the samples in the previous window
exceed the given threshold), and 0 otherwise.

Figure 6 reports the results obtained with the Drot detector.
All the documented stickings are captured by the index and a
very small number of false positives is generated. Notice that
most of the added alarms are in the deepest portion of the
borehole (where several problems related to circulation losses
are noted as well), well in agreement with the Dlin detector.
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Figure 6. Detector Drot as a function of time. From top to bottom: DBTM , RPMA, TQA, detector (normalized raw ratio in blue, rolling window count
of over-threshold samples in red, Drot in magenta). The orange circles identify the locations of the documented stickings.

V. Dpress: A STICKING INDICATOR BASED ON THE SPMT
AND SPPA SIGNALS

The role of the drilling mud in maintaining the borehole
stability (by balancing the pore pressure with its hydrostatic
pressure) is crucial in the drilling process. If the hydrostatic
pressure of the mud is insufficient a blow out can occur,
whereas if it is excessively large it may cause fractures in
the formation, with consequent mud losses. Direct monitoring
of the mud flow is not practicable in our case, due to
the unreliability of the sensors employed for this purpose.
Therefore, only the SPPA signal can be used for pressure
monitoring.

In this respect, observe that unexpected surges of the
standpipe pressure can also be connected to poor cleaning
conditions, leading to a formation of a pack off of the cuttings,
causing in turn an obstacle to the BHA motion. To establish
if an increase in SPPA is instead associated to a deliberate
action of the operator, one can check if the total pump stroke
rate SPMT is varied throughout the surge.

Accordingly, we define a third index, denoted Dpress, that
evaluates the variability of the SPPA on a rolling window,
if SPMT is non zero and practically constant. The index is
calculated as follows:

1) Filter out stand change operations.
2) For each sample time k consider the L-sample window

from k − L + 1 to k (e.g., L = 100). If the standard
deviation of SPMT in the window is sufficiently small
(e.g., not greater than 1), and SPMT is not equal to zero
(e.g., its mean in the window is greater than 10), then
calculate the value of the raw index at k as the standard

deviation of SPPA in the window from k−L+1 to k.
Otherwise, set its value to 0.

3) Calculate the rolling median SPPArm of SPPA with a
window of length L.

4) Issue an alarm (Dpress(k) = 1) if the raw index at
k is greater than or equal to 10 and SPPA(k) >
SPPArm(k)+5 (i.e., if there is a positive peak of SPPA).
Otherwise, Dpress(k) = 0.

Figure 7 shows the performances of the proposed detector
Dpress. Apparently, alarms are issued at the locations of the
documented stickings, as well as at other few locations, mostly
in the deepest section of the borehole.

VI. PREDICTION MODEL

The three proposed detectors can be used in the post-
processing of the drilling data to check the locations of well-
bore problems, but –more importantly– can also be employed
during drilling to point out both minor and major drilling
problems (with an attached direct physical interpretation), the
former representing also possible precursors for stickings. In
this section we preliminarily discuss the construction of a
prediction model based on these detectors.

The basic idea is to use the available drilling data to
correlate the detectors (as well as raw mudlog signals) to an
alarm signal which is constructed artificially by assigning the
largest value in correspondence of each documented sticking,
and a progressively lower value going backwards in time and
upwards in depth. Indeed, we would like an alarm to be issued
(and its level increased) as a sticking is approached, either in
time or depth.
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Figure 7. Detector Dpress as a function of time. From top to bottom: DBTM , SPMT , SPPA, detector (normalized raw ratio in blue, over-threshold
samples in red, Dpress in magenta). The orange circles identify the locations of the documented stickings.

Both input and output data are aggregated in depth-based 4
m bins and averaged, prior to training, to reduce the variability
and noise in the data. Then, at each time an input/output
variable is characterized by a vector of values (one value
for each depth bin), resulting in a tabular structure of the
dataset. The data are divided into a training and a test set,
the former to be used to train the model, and the second to
assess its performance. The model can be trained by employing
any standard regression algorithm on the training set. In this
study we illustrate the results obtained with the Extra Trees
method. Finally, one can obtain the predictions for the test set
by applying the obtained model on the set of features at the
current depth/time location.

In particular, to test the model performance along a specific
phase of the drilling process (between two consecutive casing
operations) of a well, we can use as training set all the data
pertaining to the other available wells, as well as the data
of the previous drilling phases of the same well (obtained
before the last casing operation). The results take the form
of an alarm vector, which has a value for each depth bin,
indicating the alarm level for that depth. Over time the input
features at a specific depth change as new data are collected
in the same depth bin. Correspondingly, the level of alarm
associated to a specific depth bin can increase, because more
critical conditions are encountered, or decrease because of the
operator’s recovery actions (e.g., reaming and backreaming).
By monitoring the alarm vector, the operator can ultimately
anticipate an impending sticking, and take appropriate action
to try and avoid it.

Figure 8 shows a pictorial representation of the outcome
of the prediction model taken at three subsequent moments

during a drilling phase that ended in a particularly severe
stuck-pipe event. As the drilling proceeds, the model (trained
on other wells and on the previous phase of the same well)
indicates initially a relatively healthy status of the wellbore
(left picture), until the 200th bin is reached. Several depth
bins are marked with a high level of risk (middle picture).
Although the subsequent actions were able to modify only
slightly the level of risk of the depth bins in this area, the
drilling was resumed (the bit goes further down to the 240th
bin) leaving behind a high risk area. This turned out to be a bad
choice, as a stuck pipe incident occurred when passing again
through that area in tripping out. Specifically, the sticking
occurs when the bit is a few bins below the critical region,
which is compatible with the position of the largest elements
of the drillstring with respect to the bit. By appropriately
reworking and consolidating the critical area before resuming
the drilling, the sticking could have possibly been avoided.

VII. CONCLUSION

Three different indicators were designed based on the mud-
log data, with the aim of capturing three different physical
phenomena associated to the insurgence of a sticking. The
first is designed to spot difficulties in the linear motion of the
drillstring, whereas the second aims at recognizing rotational
issues. The third indicator detects unexpected standpipe pres-
sure surges.

All three indicators provide valuable information both dur-
ing and after drilling, in the data assessment phase. During
drilling operations a careful monitoring of these indicators can
emphasize both minor and major drilling issues, and allow the
drilling operator to take appropriate actions. An a posteriori
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Figure 8. Screenshots of the web application showing the predicted well
status of the wellbore at three subsequent timesteps.

inspection can help correct and integrate the manual timelog
filled by the drilling crew. This post-processing is particularly
useful to provide a reliable ground truth for machine learning
models aiming to predict the mentioned drilling problems.

A model was also developed that correlates the three indi-
cators as well as other features extracted from the mudlog data
with an artificial target signal, that reproduces an increasing
alarm level as a sticking event is approached. The preliminary
results indicate that this model can provide useful information
to the drilling crew, based on which timely actions can be
taken to mitigate and sometimes avoid drilling issues.

REFERENCES

[1] R. Nybø, “Efficient drilling problem detection,” Ph.D. dissertation,
NTNU, Trondheim, Norway, 2009.

[2] T. O. Gulsrud, R. Nybø, and K. S. Bjørkevoll, “Statistical method for
detection of poor hole cleaning and stuck pipe,” in SPE Offshore Europe
Oil & Gas Conference & Exhibition. Aberdeen, U.K.: Society of
Petroleum Engineers, September 8–11 2009.

[3] S. M. Solberg, “Improved drilling process through the determination of
hardness and lithology boundaries,” Master’s thesis, Norwegian Univer-
sity of Science and Technology, Department of Petroleum Engineering
and Applied Geophysics, 2012.

[4] D. Sui, R. Nybø, and V. Azizi, “Real-time optimization of rate of
penetration during drilling operation,” in 10th IEEE International
Conference on Control and Automation (ICCA), Hangzhou, China, June
12–14 2013, pp. 357–362.

[5] S. P. Wallace, C. M. Hegde, and K. E. Gray, “A system for real-time
drilling performance optimization and automation based on statistical
learning methods,” in Middle East Intelligent Oil & Gas Conference
& Exhibition. Abu Dhabi, UAE: Society of Petroleum Engineers,
September 15–16 2015.

[6] C. Hegde, S. Wallace, and K. Gray, “Using trees, bagging, and random
forests to predict rate of penetration during drilling,” in Middle East
Intelligent Oil & Gas Conference & Exhibition. Abu Dhabi, UAE:
Society of Petroleum Engineers, September 15–16 2015.

[7] C. Hegde and K. E. Gray, “Use of machine learning and data analytics
to increase drilling efficiency for nearby wells,” Journal of Natural Gas
Science and Engineering, vol. 40, pp. 327–335, 2017.

[8] D. Sui, R. Nybø, G. Gola, D. Roverso, and M. Hoffmann, “Ensemble
methods for process monitoring in oil and gas industry operations,”
Journal of Natural Gas Science and Engineering, vol. 3, pp. 748–753,
2011.

[9] G. Gola, R. Nybo, D. Sui, and D. Roverso, “Improving management
and control of drilling operations with artificial intelligence,” in SPE
Intelligent Energy International. Utrecht, The Netherlands: Society of
Petroleum Engineers, March 27–29 2012.

[10] D. Sui, R. Nybø, S. Hovland, and T. A. Johansen, “A moving horizon
observer for estimation of bottomhole pressure during drilling,” in
Proceedings of the 2012 IFAC Workshop on Automatic Control in
Offshore Oil and Gas Production, Norwegian University of Science and
Technology, Trondheim, Norway, May 31 – June 1 2012, pp. 145–150.

[11] R. Roberts, R. Flin, and J. Cleland, “How to recognise a kick: A cogni-
tive task analysis of drillers’ situation awareness during well operations,”
Journal of Loss Prevention in the Process Industries, vol. 43, pp. 503–
513, 2016.

[12] R. Nybo and D. Sui, “Closing the integration gap for the next generation
of drilling decision support systems,” in SPE Intelligent Energy Confer-
ence. Utrecht, The Netherlands: Society of Petroleum Engineers, April
1–3 2014.

[13] F. Efteland, A. Creegan, L. Jordan, and C. Caraway, “The significance
of pro-active online monitoring with stick-slip mitigation,” in Abu Dhabi
International Petroleum Exhibition and Conference. Abu Dhabi, UAE:
Society of Petroleum Engineers, November 9–12 2015.


	Introduction
	Data-based characterization of the stuck-pipe conditions
	Mudlog data description and analysis
	The stuck-pipe condition

	Dlin: a sticking indicator based on the BPOS and HKLA signals
	Drot: a sticking indicator based on the TQA and RPMA signals
	Dpress: a sticking indicator based on the SPMT and SPPA signals
	Prediction model
	Conclusion
	References

