794 research outputs found

    Condensation for a fixed number of independent random variables

    Full text link
    A family of m independent identically distributed random variables indexed by a chemical potential \phi\in[0,\gamma] represents piles of particles. As \phi increases to \gamma, the mean number of particles per site converges to a maximal density \rho_c<\infty. The distribution of particles conditioned on the total number of particles equal to n does not depend on \phi (canonical ensemble). For fixed m, as n goes to infinity the canonical ensemble measure behave as follows: removing the site with the maximal number of particles, the distribution of particles in the remaining sites converges to the grand canonical measure with density \rho_c; the remaining particles concentrate (condensate) on a single site.Comment: 6 page

    Matrix Models, Argyres-Douglas singularities and double scaling limits

    Full text link
    We construct an N=1 theory with gauge group U(nN) and degree n+1 tree level superpotential whose matrix model spectral curve develops an A_{n+1} Argyres-Douglas singularity. We evaluate the coupling constants of the low-energy U(1)^n theory and show that the large N expansion is singular at the Argyres-Douglas points. Nevertheless, it is possible to define appropriate double scaling limits which are conjectured to yield four dimensional non-critical string theories as proposed by Ferrari. In the Argyres-Douglas limit the n-cut spectral curve degenerates into a solution with n/2 cuts for even n and (n+1)/2 cuts for odd n.Comment: 31 pages, 1 figure; the expression of the superpotential has been corrected and the calculation of the coupling constants of the low-energy theory has been adde

    On the Two Species Asymmetric Exclusion Process with Semi-Permeable Boundaries

    Full text link
    We investigate the structure of the nonequilibrium stationary state (NESS) of a system of first and second class particles, as well as vacancies (holes), on L sites of a one-dimensional lattice in contact with first class particle reservoirs at the boundary sites; these particles can enter at site 1, when it is vacant, with rate alpha, and exit from site L with rate beta. Second class particles can neither enter nor leave the system, so the boundaries are semi-permeable. The internal dynamics are described by the usual totally asymmetric exclusion process (TASEP) with second class particles. An exact solution of the NESS was found by Arita. Here we describe two consequences of the fact that the flux of second class particles is zero. First, there exist (pinned and unpinned) fat shocks which determine the general structure of the phase diagram and of the local measures; the latter describe the microscopic structure of the system at different macroscopic points (in the limit L going to infinity in terms of superpositions of extremal measures of the infinite system. Second, the distribution of second class particles is given by an equilibrium ensemble in fixed volume, or equivalently but more simply by a pressure ensemble, in which the pair potential between neighboring particles grows logarithmically with distance. We also point out an unexpected feature in the microscopic structure of the NESS for finite L: if there are n second class particles in the system then the distribution of first class particles (respectively holes) on the first (respectively last) n sites is exchangeable.Comment: 28 pages, 4 figures. Changed title and introduction for clarity, added reference

    Solitons in Seiberg-Witten Theory and D-branes in the Derived Category

    Get PDF
    We analyze the "geometric engineering" limit of a type II string on a suitable Calabi-Yau threefold to obtain an N=2 pure SU(2) gauge theory. The derived category picture together with Pi-stability of B-branes beautifully reproduces the known spectrum of BPS solitons in this case in a very explicit way. Much of the analysis is particularly easy since it can be reduced to questions about the derived category of CP1.Comment: 20 pages, LaTex2

    Tunneling and Metastability of continuous time Markov chains

    Full text link
    We propose a new definition of metastability of Markov processes on countable state spaces. We obtain sufficient conditions for a sequence of processes to be metastable. In the reversible case these conditions are expressed in terms of the capacity and of the stationary measure of the metastable states

    Solving matrix models using holomorphy

    Get PDF
    We investigate the relationship between supersymmetric gauge theories with moduli spaces and matrix models. Particular attention is given to situations where the moduli space gets quantum corrected. These corrections are controlled by holomorphy. It is argued that these quantum deformations give rise to non-trivial relations for generalized resolvents that must hold in the associated matrix model. These relations allow to solve a sector of the associated matrix model in a similar way to a one-matrix model, by studying a curve that encodes the generalized resolvents. At the level of loop equations for the matrix model, the situations with a moduli space can sometimes be considered as a degeneration of an infinite set of linear equations, and the quantum moduli space encodes the consistency conditions for these equations to have a solution.Comment: 38 pages, JHEP style, 1 figur

    Phases and geometry of the N=1 A_2 quiver gauge theory and matrix models

    Full text link
    We study the phases and geometry of the N=1 A_2 quiver gauge theory using matrix models and a generalized Konishi anomaly. We consider the theory both in the Coulomb and Higgs phases. Solving the anomaly equations, we find that a meromorphic one-form sigma(z)dz is naturally defined on the curve Sigma associated to the theory. Using the Dijkgraaf-Vafa conjecture, we evaluate the effective low-energy superpotential and demonstrate that its equations of motion can be translated into a geometric property of Sigma: sigma(z)dz has integer periods around all compact cycles. This ensures that there exists on Sigma a meromorphic function whose logarithm sigma(z)dz is the differential. We argue that the surface determined by this function is the N=2 Seiberg-Witten curve of the theory.Comment: 41 pages, 2 figures, JHEP style. v2: references adde

    Singularities of N=1 Supersymmetric Gauge Theory and Matrix Models

    Full text link
    In N=1 supersymmetric U(N) gauge theory with adjoint matter Φ\Phi and polynomial tree-level superpotential W(Φ)W(\Phi), the massless fluctuations about each quantum vacuum are generically described by U(1)nU(1)^n gauge theory for some n. However, by tuning the parameters of W(Φ)W(\Phi) to non-generic values, we can reach singular vacua where additional fields become massless. Using both the matrix model prescription and the strong-coupling approach, we study in detail three examples of such singularities: the singularities of the n=1 branch, intersections of n=1 and n=2 branches, and a class of N=1 Argyres-Douglas points. In all three examples, we find that the matrix model description of the low-energy physics breaks down in some way at the singularity.Comment: 29 pages, 1 figure. Revised section 1, fixed misprints in section 3.1, added clarifications and reference

    Determinant representation for some transition probabilities in the TASEP with second class particles

    Full text link
    We study the transition probabilities for the totally asymmetric simple exclusion process (TASEP) on the infinite integer lattice with a finite, but arbitrary number of first and second class particles. Using the Bethe ansatz we present an explicit expression of these quantities in terms of the Bethe wave function. In a next step it is proved rigorously that this expression can be written in a compact determinantal form for the case where the order of the first and second class particles does not change in time. An independent geometrical approach provides insight into these results and enables us to generalize the determinantal solution to the multi-class TASEP.Comment: Minor revision; journal reference adde

    Infinite systems of non-colliding generalized meanders and Riemann-Liouville differintegrals

    Full text link
    Yor's generalized meander is a temporally inhomogeneous modification of the 2(ν+1)2(\nu+1)-dimensional Bessel process with ν>1\nu > -1, in which the inhomogeneity is indexed by κ[0,2(ν+1))\kappa \in [0, 2(\nu+1)). We introduce the non-colliding particle systems of the generalized meanders and prove that they are the Pfaffian processes, in the sense that any multitime correlation function is given by a Pfaffian. In the infinite particle limit, we show that the elements of matrix kernels of the obtained infinite Pfaffian processes are generally expressed by the Riemann-Liouville differintegrals of functions comprising the Bessel functions JνJ_{\nu} used in the fractional calculus, where orders of differintegration are determined by νκ\nu-\kappa. As special cases of the two parameters (ν,κ)(\nu, \kappa), the present infinite systems include the quaternion determinantal processes studied by Forrester, Nagao and Honner and by Nagao, which exhibit the temporal transitions between the universality classes of random matrix theory.Comment: LaTeX, 35 pages, v3: The argument given in Section 3.2 was simplified. Minor corrections were mad
    corecore