3,548 research outputs found
The Raman Fingerprint of Graphene
Graphene is the two-dimensional (2d) building block for carbon allotropes of
every other dimensionality. It can be stacked into 3d graphite, rolled into 1d
nanotubes, or wrapped into 0d fullerenes. Its recent discovery in free state
has finally provided the possibility to study experimentally its electronic and
phonon properties. Here we show that graphene's electronic structure is
uniquely captured in its Raman spectrum that clearly evolves with increasing
number of layers. Raman fingerprints for single-, bi- and few-layer graphene
reflect changes in the electronic structure and electron-phonon interactions
and allow unambiguous, high-throughput, non-destructive identification of
graphene layers, which is critically lacking in this emerging research area
Role of ivabradine in management of stable angina in patients with different clinical profiles
In chronic stable angina, elevated heart rate contributes to the development of symptoms and signs of myocardial ischaemia by increasing myocardial oxygen demand and reducing diastolic perfusion time. Accordingly, heart rate reduction is a well-known strategy for improving both symptoms of myocardial ischaemia and quality of life (QOL). The heart rate-reducing agent ivabradine, a direct and selective inhibitor of the I f current, decreases myocardial oxygen consumption while increasing diastolic time, without affecting myocardial contractility or coronary vasomotor tone. Ivabradine is indicated for treatment of stable angina and chronic heart failure (HF). This review examines available evidence regarding the efficacy and safety of ivabradine in stable angina, when used as monotherapy or in combination with beta-blockers, in particular angina subgroups and in patients with stable angina with left ventricular systolic dysfunction (LVSD) or HF. Trials involving more than 45 000 patients receiving treatment with ivabradine have shown that this agent has antianginal and anti-ischaemic effects, regardless of age, sex, severity of angina, revascularisation status or comorbidities. This heart rate-lowering agent might also improve prognosis, reduce hospitalisation rates and improve QOL in angina patients with chronic HF and LVSD
Post-Retained Single Crowns versus Fixed Dental Prostheses: A 7-Year Prospective Clinical Study
Biomechanical integrity of endodontically treated teeth (ETT) is often compromised. Degree of hard tissue loss and type of final prosthetic restoration should be carefully considered when making a treatment plan. The objective of this prospective clinical trial was to assess the influence of the type of prosthetic restoration as well as the degree of hard tissue loss on 7-y clinical performance of ETT restored with fiber posts. Two groups (n = 60) were defined depending on the type of prosthetic restoration needed: 1) single unit porcelain-fused-to-metal (PFM) crowns (SCs) and 2) 3- to 4-unit PFM fixed dental prostheses (FDPs), with 1 healthy and 1 endodontically treated and fiber post-restored abutment. Within each group, samples were divided into 2 subgroups (n = 30) according to the amount of residual coronal tissues after abutment buildup and final preparation: A) >50% of coronal residual structure or B) equal to or <50% of coronal residual structure. The clinical outcome was assessed based on clinical and intraoral radiographic examinations at the recalls after 6, 12, 24, 36, 48, and 84 mo. Data were analyzed by Kaplan-Meier log-rank test and Cox regression analysis (P < 0.05). The overall 7-y survival rate of ETT restored with fiber post and either SCs or FDPs was 69.2%. The highest 84-mo survival rate was recorded in group 1A (90%), whereas teeth in group 2B exhibited the lowest performance (56.7% survival rate). The log-rank test detected statistically significant differences in survival rates among the groups (P = 0.048). Cox regression analysis revealed that the amount of residual coronal structure (P = 0.041; hazard ratio [HR], 2.026; 95% confidence interval [CI] for HR, 1.031–3.982) and the interaction between the type of prosthetic restoration and the amount of residual coronal structure (P = 0.024; HR, 1.372; 95% CI for HR, 1.042–1.806) were statistically significant factors for survival (ClinicalTrials.gov NCT01532947)
Pitfalls in neuroendocrine tumor diagnosis
Not available<br /
Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure
Ultrafast electron thermalization - the process leading to Auger
recombination, carrier multiplication via impact ionization and hot carrier
luminescence - occurs when optically excited electrons in a material undergo
rapid electron-electron scattering to redistribute excess energy and reach
electronic thermal equilibrium. Due to extremely short time and length scales,
the measurement and manipulation of electron thermalization in nanoscale
devices remains challenging even with the most advanced ultrafast laser
techniques. Here, we overcome this challenge by leveraging the atomic thinness
of two-dimensional van der Waals (vdW) materials in order to introduce a highly
tunable electron transfer pathway that directly competes with electron
thermalization. We realize this scheme in a graphene-boron nitride-graphene
(G-BN-G) vdW heterostructure, through which optically excited carriers are
transported from one graphene layer to the other. By applying an interlayer
bias voltage or varying the excitation photon energy, interlayer carrier
transport can be controlled to occur faster or slower than the intralayer
scattering events, thus effectively tuning the electron thermalization pathways
in graphene. Our findings, which demonstrate a novel means to probe and
directly modulate electron energy transport in nanoscale materials, represent
an important step toward designing and implementing novel optoelectronic and
energy-harvesting devices with tailored microscopic properties.Comment: Accepted to Nature Physic
Ultra-strong Adhesion of Graphene Membranes
As mechanical structures enter the nanoscale regime, the influence of van der
Waals forces increases. Graphene is attractive for nanomechanical systems
because its Young's modulus and strength are both intrinsically high, but the
mechanical behavior of graphene is also strongly influenced by the van der
Waals force. For example, this force clamps graphene samples to substrates, and
also holds together the individual graphene sheets in multilayer samples. Here
we use a pressurized blister test to directly measure the adhesion energy of
graphene sheets with a silicon oxide substrate. We find an adhesion energy of
0.45 \pm 0.02 J/m2 for monolayer graphene and 0.31 \pm 0.03 J/m2 for samples
containing 2-5 graphene sheets. These values are larger than the adhesion
energies measured in typical micromechanical structures and are comparable to
solid/liquid adhesion energies. We attribute this to the extreme flexibility of
graphene, which allows it to conform to the topography of even the smoothest
substrates, thus making its interaction with the substrate more liquid-like
than solid-like.Comment: to appear in Nature Nanotechnolog
Single-pill combination in the management of chronic coronary syndromes: A strategy to improve treatment adherence and patient outcomes?
Chronic coronary syndrome (CCS) represents a major challenge for physicians, particularly in the context of an increasing aging population. Additionally, CCS is often underestimated and under-recognised, particularly in female patients. As patients are frequently affected by several chronic comorbidities requiring polypharmacy, this can have a negative impact on patients' adherence to treatment. To overcome this barrier, single-pill combination (SPC), or fixed-dose combination, therapies are already widely used in the management of conditions such as hypertension, dyslipidaemia, and diabetes mellitus. The use of SPC anti-anginal therapy deserves careful consideration, as it has the potential to substantially improve treatment adherence and clinical outcomes, along with reducing the failure of pharmacological treatment before considering other interventions in patients with CCS
Coral Reef Fish Rapidly Learn to Identify Multiple Unknown Predators upon Recruitment to the Reef
Organisms often undergo shifts in habitats as their requirements change with ontogeny
- …