21,751 research outputs found

    Anisotropic KPZ growth in 2+1 dimensions: fluctuations and covariance structure

    Get PDF
    In [arXiv:0804.3035] we studied an interacting particle system which can be also interpreted as a stochastic growth model. This model belongs to the anisotropic KPZ class in 2+1 dimensions. In this paper we present the results that are relevant from the perspective of stochastic growth models, in particular: (a) the surface fluctuations are asymptotically Gaussian on a sqrt(ln(t)) scale and (b) the correlation structure of the surface is asymptotically given by the massless field.Comment: 13 pages, 4 figure

    Model checking usage policies

    Get PDF
    We study usage automata, a formal model for specifying policies on the usage of resources. Usage automata extend finite state automata with some additional features, parameters and guards, that improve their expressivity. We show that usage automata are expressive enough to model policies of real-world applications. We discuss their expressive power, and we prove that the problem of telling whether a computation complies with a usage policy is decidable. The main contribution of this paper is a model checking technique for usage automata. The model is that of usages, i.e. basic processes that describe the possible patterns of resource access and creation. In spite of the model having infinite states, because of recursion and resource creation, we devise a polynomial-time model checking technique for deciding when a usage complies with a usage policy

    Two-dimensional Poisson Trees converge to the Brownian web

    Full text link
    The Brownian web can be roughly described as a family of coalescing one-dimensional Brownian motions starting at all times in R\R and at all points of R\R. It was introduced by Arratia; a variant was then studied by Toth and Werner; another variant was analyzed recently by Fontes, Isopi, Newman and Ravishankar. The two-dimensional \emph{Poisson tree} is a family of continuous time one-dimensional random walks with uniform jumps in a bounded interval. The walks start at the space-time points of a homogeneous Poisson process in R2\R^2 and are in fact constructed as a function of the point process. This tree was introduced by Ferrari, Landim and Thorisson. By verifying criteria derived by Fontes, Isopi, Newman and Ravishankar, we show that, when properly rescaled, and under the topology introduced by those authors, Poisson trees converge weakly to the Brownian web.Comment: 22 pages, 1 figure. This version corrects an error in the previous proof. The results are the sam

    Mean Field Voter Model of Election to the House of Representatives in Japan

    Full text link
    In this study, we propose a mechanical model of a plurality election based on a mean field voter model. We assume that there are three candidates in each electoral district, i.e., one from the ruling party, one from the main opposition party, and one from other political parties. The voters are classified as fixed supporters and herding (floating) voters with ratios of 1p1-p and pp, respectively. Fixed supporters make decisions based on their information and herding voters make the same choice as another randomly selected voter. The equilibrium vote-share probability density of herding voters follows a Dirichlet distribution. We estimate the composition of fixed supporters in each electoral district and pp using data from elections to the House of Representatives in Japan (43rd to 47th). The spatial inhomogeneity of fixed supporters explains the long-range spatial and temporal correlations. The estimated values of pp are close to the estimates obtained from a survey.Comment: 11 pages, 7 figure

    ATCA observations of the galaxy cluster Abell 3921 - I. Radio emission from the central merging sub-clusters

    Get PDF
    We present the analysis of our 13 and 22 cm ATCA observations of the central region of the merging galaxy cluster A3921 (z=0.094). We investigated the effects of the major merger between two sub-clusters on the star formation (SF) and radio emission properties of the confirmed cluster members. The origin of SF and the nature of radio emission in cluster galaxies was investigated by comparing their radio, optical and X-ray properties. We also compared the radio source counts and the percentage of detected radio galaxies with literature data. We detected 17 radio sources above the flux density limit of 0.25 mJy/beam in the central field of A3921, among which 7 are cluster members. 9 galaxies with star-forming optical spectra were observed in the collision region of the merging sub-clusters. They were not detected at radio wavelengths, giving upper limits for their star formation rate significantly lower than those typically found in late-type, field galaxies. Most of these star-forming objects are therefore really located in the high density part of the cluster, and they are not infalling field objects seen in projection at the cluster centre. Their SF episode is probably related to the cluster collision that we observe in its very central phase. None of the galaxies with post-starburst optical spectra was detected down our 2σ\sigma flux density limit, confirming that they are post-starburst and not dusty star-forming objects. We finally detected a narrow-angle tail (NAT) source associated with the second brightest cluster galaxy (BG2), whose diffuse component is a partly detached pair of tails from an earlier period of activity of the BG2 galaxy.Comment: 17 pages, 9 figures, accepted for publication in A&A, date of acceptance 29/06/2006. A version of the paper with higher resolution images can be downloaded at: http://astro.uibk.ac.at/~c.ferrari/ATCA_Paper/A3921_ATCA.pd

    From interacting particle systems to random matrices

    Full text link
    In this contribution we consider stochastic growth models in the Kardar-Parisi-Zhang universality class in 1+1 dimension. We discuss the large time distribution and processes and their dependence on the class on initial condition. This means that the scaling exponents do not uniquely determine the large time surface statistics, but one has to further divide into subclasses. Some of the fluctuation laws were first discovered in random matrix models. Moreover, the limit process for curved limit shape turned out to show up in a dynamical version of hermitian random matrices, but this analogy does not extend to the case of symmetric matrices. Therefore the connections between growth models and random matrices is only partial.Comment: 18 pages, 8 figures; Contribution to StatPhys24 special issue; minor corrections in scaling of section 2.

    Phase synchronization of coupled bursting neurons and the generalized Kuramoto model

    Full text link
    Bursting neurons fire rapid sequences of action potential spikes followed by a quiescent period. The basic dynamical mechanism of bursting is the slow currents that modulate a fast spiking activity caused by rapid ionic currents. Minimal models of bursting neurons must include both effects. We considered one of these models and its relation with a generalized Kuramoto model, thanks to the definition of a geometrical phase for bursting and a corresponding frequency. We considered neuronal networks with different connection topologies and investigated the transition from a non-synchronized to a partially phase-synchronized state as the coupling strength is varied. The numerically determined critical coupling strength value for this transition to occur is compared with theoretical results valid for the generalized Kuramoto model.Comment: 31 pages, 5 figure

    Bosonic Field Propagators on Algebraic Curves

    Get PDF
    In this paper we investigate massless scalar field theory on non-degenerate algebraic curves. The propagator is written in terms of the parameters appearing in the polynomial defining the curve. This provides an alternative to the language of theta functions. The main result is a derivation of the third kind differential normalized in such a way that its periods around the homology cycles are purely imaginary. All the physical correlation functions of the scalar fields can be expressed in terms of this object. This paper contains a detailed analysis of the techniques necessary to study field theories on algebraic curves. A simple expression of the scalar field propagator is found in a particular case in which the algebraic curves have ZnZ_n internal symmetry and one of the fields is located at a branch point.Comment: 26 pages, TeX + harvma
    corecore