In this paper we investigate massless scalar field theory on non-degenerate
algebraic curves. The propagator is written in terms of the parameters
appearing in the polynomial defining the curve. This provides an alternative to
the language of theta functions. The main result is a derivation of the third
kind differential normalized in such a way that its periods around the homology
cycles are purely imaginary. All the physical correlation functions of the
scalar fields can be expressed in terms of this object. This paper contains a
detailed analysis of the techniques necessary to study field theories on
algebraic curves. A simple expression of the scalar field propagator is found
in a particular case in which the algebraic curves have Zn internal symmetry
and one of the fields is located at a branch point.Comment: 26 pages, TeX + harvma