435 research outputs found
Asymptotic Conformal Invariance in a Non-Abelian Chern-Simons-Matter Model
One shows here the existence of solutions to the Callan-Symanzik equation for
the non-Abelian SU(2) Chern-Simons-matter model which exhibits asymptotic
conformal invariance to every order in perturbative theory. The conformal
symmetry in the classical domain is shown to hold by means of a local criteria
based on the trace of the energy-momentum tensor. By using the recently
exhibited regimes for the dependence between the several couplings in which the
set of -functions vanish, the asymptotic conformal invariance of the
model appears to be valid in the quantum domain. By considering the SU(n) case
the possible non validity of the proof for a particular n would be merely
accidental.Comment: Latex2e 8 page
Breaking CPT by mixed non-commutativity
The mixed component of the non-commutative parameter \theta_{\mu M}, where
\mu = 0,1,2,3 and M is an extra dimensional index may violate four-dimensional
CPT invariance. We calculate one and two-loop induced couplings of \theta_{\mu
5} with the four-dimensional axial vector current and with the CPT odd dim=6
operators starting from five-dimensional Yukawa and U(1) theories. The
resulting bounds from clock comparison experiments place a stringent constraint
on \theta_{\mu 5}, |\theta_{\mu 5}|^{-1/2} > 5\times 10^{11} GeV. The orbifold
projection and/or localization of fermions on a 3-brane lead to CPT-conserving
physics, in which case the constraints on \theta{\mu 5} are softened.Comment: 4 pages, latex, 1 figur
Minimal Standard Heterotic String Models
Three generation heterotic-string vacua in the free fermionic formulation
gave rise to models with solely the MSSM states in the observable Standard
Model charged sector. The relation of these models to Z_2 x Z_2 orbifold
compactifications dictates that they produce three pairs of untwisted Higgs
multiplets. The reduction to one pair relies on the analysis of supersymmetric
flat directions, that give superheavy mass to the dispensable Higgs states. We
explore the removal of the extra Higgs representations by using the free
fermion boundary conditions and hence directly at the string level, rather than
in the effective low energy field theory. We present a general mechanism that
achieves this reduction by using asymmetric boundary conditions between the
left- and right-moving internal fermions. We incorporate this mechanism in
explicit string models containing three twisted generations and a single
untwisted Higgs doublet pair. We further demonstrate that an additional effect
of the asymmetric boundary conditions is to substantially reduce the
supersymmetric moduli space.Comment: 20 pages, LaTeX; added reference
Theory-Motivated Benchmark Models and Superpartners at the Tevatron
Recently published benchmark models have contained rather heavy
superpartners. To test the robustness of this result, several benchmark models
have been constructed based on theoretically well-motivated approaches,
particularly string-based ones. These include variations on anomaly and
gauge-mediated models, as well as gravity mediation. The resulting spectra
often have light gauginos that are produced in significant quantities at the
Tevatron collider, or will be at a 500 GeV linear collider. The signatures also
provide interesting challenges for the LHC. In addition, these models usually
account for electroweak symmetry breaking with relatively less fine-tuning than
previous benchmark models.Comment: 44 pages, 4 figures; some typos corrected. Revisions reflect
published versio
Non-universal Soft Parameters in Brane World and the Flavor Problem in Supergravity
We consider gravity mediated supersymmetry (SUSY) breaking in 5D spacetime
with two 4D branes B1 and B2 separated in the extra dimension. Using an
off-shell 5D supergravity (SUGRA) formalism, we argue that the SUSY breaking
scales could be non-universal even at the fundamental scale in a brane world
setting, since SUSY breaking effects could be effectively localized. As an
application, we suggest a model in which the two light chiral MSSM generations
reside on B1, while the third generation is located on B2, and the Higgs
multiplets as well as gravity and gauge multiplets reside in the bulk. For SUSY
breaking of the order of 10--20 TeV caused by a hidden sector localized at B1,
the scalars belonging to the first two generations can become sufficiently
heavy to overcome the SUSY flavor problem. SUSY breaking on B2 from a different
localized hidden sector gives rise to the third generation soft scalar masses
of the order of 1 TeV. Gaugino masses are also of the order of 1 TeV if the
size of the extra dimension is . As in 4D
effective supersymmetric theory, an adjustment of TeV scale parameters is
needed to realize the 100 GeV electroweak symmetry breaking scale.Comment: 1+22 pages, Version to appear in PRD with additional comments and
reference
Detecting Physics At The Post-GUT And String Scales By Linear Colliders
The ability of linear colliders to test physics at the post-GUT scale is
investigated. Using current estimates of measurements available at such
accelerators, it is seen that soft breaking masses can be measured with errors
of about (1-20)%. Three classes of models in the post-GUT region are examined:
models with universal soft breaking masses at the string scale, models with
horizontal symmetry, and string models with Calabi-Yau compactifications. In
each case, linear colliders would be able to test directly theoretical
assumptions made at energies beyond the GUT scale to a good accuracy,
distinguish between different models, and measure parameters that are expected
to be predictions of string models.Comment: Latex, 21 pages, no figure
Torsion Constraints in the Randall--Sundrum Scenario
Torsion appears due to fermions coupled to gravity and leads to the strongest
particle physics bounds on flat extra dimensions. In this work, we consider
torsion constraints in the case of a warped extra dimension with brane and bulk
fermions. From current data we obtain a 3-sigma bound on the TeV--brane mass
scale scale \Lambda_\pi > 2.2 (10) TeV for the AdS curvature k=1 (0.01) in
(reduced) Planck units. If Dirac or light sterile neutrinos reside on the
brane, the bound increases to 17 (78) TeV.Comment: typos corrected, matches the Phys. Rev. D versio
Relating the CMSSM and SUGRA models with GUT scale and Super-GUT scale Supersymmetry Breaking
While the constrained minimal supersymmetric standard model (CMSSM) with
universal gaugino masses, m_{1/2}, scalar masses, m_0, and A-terms, A_0,
defined at some high energy scale (usually taken to be the GUT scale) is
motivated by general features of supergravity models, it does not carry all of
the constraints imposed by minimal supergravity (mSUGRA). In particular, the
CMSSM does not impose a relation between the trilinear and bilinear soft
supersymmetry breaking terms, B_0 = A_0 - m_0, nor does it impose the relation
between the soft scalar masses and the gravitino mass, m_0 = m_{3/2}. As a
consequence, tan(\beta) is computed given values of the other CMSSM input
parameters. By considering a Giudice-Masiero (GM) extension to mSUGRA, one can
introduce new parameters to the K\"ahler potential which are associated with
the Higgs sector and recover many of the standard CMSSM predictions. However,
depending on the value of A_0, one may have a gravitino or a neutralino dark
matter candidate. We also consider the consequences of imposing the
universality conditions above the GUT scale. This GM extension provides a
natural UV completion for the CMSSM.Comment: 16 pages, 11 figures; added erratum correcting several equations and
results in Sec.2, Sec.3 and 4 remain unaffected and conclusions unchange
Effective Lagrangian for and Vertices in the mSUGRA model
Complete expressions of the and vertices are
derived in the framework of supersymmetry with minimal flavor violation. With
the minimal supergravity (mSUGRA) model, a numerical analysis of the
supersymmetric contributions to the Wilson Coefficients at the weak scale is
presented.Comment: 12 pages + 7 ps figures, Late
- âŠ