47 research outputs found

    The Rest Repression of the Neurosecretory Phenotype Is Negatively Modulated by BHC80, a Protein of the BRAF/HDAC Complex

    Get PDF
    Expression of neurosecretion by nerve cells requires the levels of the transcription repressor element-1 silencing transcription factor (REST) to be very low. However, when high-REST clones of PC12 cells, defective of neurosecretion, were fused to other high-REST, non-neurosecretory cells, some neurosecretion was recovered. To clarify the mechanism of this recovery, we fused defective PC12 cells with human lymphocytes. A cytogenetic analysis revealed all hybrid clones that recovered neurosecretion to contain a fragment of chromosome 11 including the gene encoding BHC80, a protein of one of the complexes that mediate REST repression. In these clones, REST levels were as high as in defective PC12, whereas BHC80, localized in the nucleus, was 4- to 5-fold higher. Transient transfection of defective PC12 with various amounts of BHC80 cDNA induced (1) in defective PC12, the reexpression of only neurosecretion mRNAs; (2) in defective PC12 cotransfected with the REST negative construct DNA-binding domain (to attenuate gene repression), the recovery of a weak, but complete neurosecretory phenotype, including dense-core granules and their regulated exocytosis. Chromatin immunoprecipitation and immunodepletion analyses revealed the extensive BHC80 association with REST at the genes of two neurosecretion proteins, chromograninB and SNAP25, however only in the low-REST PC12, whereas in high-REST defective PC12 no association was appreciable. In defective PC12 transfected with BHC80 some association was reestablished. Therefore, the recovery of neurosecretion observed after fusion/transfection of defective PC12 depends on the reciprocal level of BHC80 and REST, with BHC80 working as a negative modulator of REST repression. This role appears of possible cell physiological and pathological importance

    The Rest Repression of the Neurosecretory Phenotype Is Negatively Modulated by BHC80, a Protein of the BRAF/HDAC Complex

    Get PDF
    Expression of neurosecretion by nerve cells requires the levels of the transcription repressor element-1 silencing transcription factor (REST) to be very low. However, when high-REST clones of PC12 cells, defective of neurosecretion, were fused to other high-REST, non-neurosecretory cells, some neurosecretion was recovered. To clarify the mechanism of this recovery, we fused defective PC12 cells with human lymphocytes. A cytogenetic analysis revealed all hybrid clones that recovered neurosecretion to contain a fragment of chromosome 11 including the gene encoding BHC80, a protein of one of the complexes that mediate REST repression. In these clones, REST levels were as high as in defective PC12, whereas BHC80, localized in the nucleus, was 4- to 5-fold higher. Transient transfection of defective PC12 with various amounts of BHC80 cDNA induced (1) in defective PC12, the reexpression of only neurosecretion mRNAs; (2) in defective PC12 cotransfected with the REST negative construct DNA-binding domain (to attenuate gene repression), the recovery of a weak, but complete neurosecretory phenotype, including dense-core granules and their regulated exocytosis. Chromatin immunoprecipitation and immunodepletion analyses revealed the extensive BHC80 association with REST at the genes of two neurosecretion proteins, chromograninB and SNAP25, however only in the low-REST PC12, whereas in high-REST defective PC12 no association was appreciable. In defective PC12 transfected with BHC80 some association was reestablished. Therefore, the recovery of neurosecretion observed after fusion/transfection of defective PC12 depends on the reciprocal level of BHC80 and REST, with BHC80 working as a negative modulator of REST repression. This role appears of possible cell physiological and pathological importance

    RNA polymerase II primes Polycomb-repressed developmental genes throughout terminal neuronal differentiation

    Get PDF
    Polycomb repression in mouse embryonic stem cells (ESCs) is tightly associated with promoter co-occupancy of RNA polymerase II (RNAPII) which is thought to prime genes for activation during early development. However, it is unknown whether RNAPII poising is a general feature of Polycomb repression, or is lost during differentiation. Here, we map the genome-wide occupancy of RNAPII and Polycomb from pluripotent ESCs to non-dividing functional dopaminergic neurons. We find that poised RNAPII complexes are ubiquitously present at Polycomb-repressed genes at all stages of neuronal differentiation. We observe both loss and acquisition of RNAPII and Polycomb at specific groups of genes reflecting their silencing or activation. Strikingly, RNAPII remains poised at transcription factor genes which are silenced in neurons through Polycomb repression, and have major roles in specifying other, non-neuronal lineages. We conclude that RNAPII poising is intrinsically associated with Polycomb repression throughout differentiation. Our work suggests that the tight interplay between RNAPII poising and Polycomb repression not only instructs promoter state transitions, but also may enable promoter plasticity in differentiated cells

    Widespread activation of antisense transcription of the host genome during herpes simplex virus 1 infection

    Get PDF
    Background: Herpesviruses can infect a wide range of animal species. Herpes simplex virus 1 (HSV-1) is one of the eight herpesviruses that can infect humans and is prevalent worldwide. Herpesviruses have evolved multiple ways to adapt the infected cells to their needs, but knowledge about these transcriptional and post-transcriptional modifications is sparse. Results: Here, we show that HSV-1 induces the expression of about 1000 antisense transcripts from the human host cell genome. A subset of these is also activated by the closely related varicella zoster virus. Antisense transcripts originate either at gene promoters or within the gene body, and they show different susceptibility to the inhibition of early and immediate early viral gene expression. Overexpression of the major viral transcription factor ICP4 is sufficient to turn on a subset of antisense transcripts. Histone marks around transcription start sites of HSV-1-induced and constitutively transcribed antisense transcripts are highly similar, indicating that the genetic loci are already poised to transcribe these novel RNAs. Furthermore, an antisense transcript overlapping with the BBC3 gene (also known as PUMA) transcriptionally silences this potent inducer of apoptosis in cis. Conclusions: We show for the first time that a virus induces widespread antisense transcription of the host cell genome. We provide evidence that HSV-1 uses this to downregulate a strong inducer of apoptosis. Our findings open new perspectives on global and specific alterations of host cell transcription by viruses

    Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation

    Get PDF
    Mammalian chromosomes fold into arrays of megabase‐sized topologically associating domains (TADs), which are arranged into compartments spanning multiple megabases of genomic DNA. TADs have internal substructures that are often cell type specific, but their higher‐order organization remains elusive. Here, we investigate TAD higher‐order interactions with Hi‐C through neuronal differentiation and show that they form a hierarchy of domains‐within‐domains (metaTADs) extending across genomic scales up to the range of entire chromosomes. We find that TAD interactions are well captured by tree‐like, hierarchical structures irrespective of cell type. metaTAD tree structures correlate with genetic, epigenomic and expression features, and structural tree rearrangements during differentiation are linked to transcriptional state changes. Using polymer modelling, we demonstrate that hierarchical folding promotes efficient chromatin packaging without the loss of contact specificity, highlighting a role far beyond the simple need for packing efficiency
    corecore