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ABSTRACT

Transcription is a very complex multi-step process presenting different levels of regulation. 

A large amount of general transcription factors and cofactors recruited on the promoters 

participate, together with the polymerases, in driving RNA production. The formation of 

chromatin loops allows their interaction with specific transcription factors bound to distant 

regulatory sequences and the fine tuning of the gene activity. A further level of complexity 

is provided by the structural and functional compartmentalization of the nucleus. In fact 

gene transcription takes place in a strongly localized fashion and nuclear architecture can 

influence genome regulation. One of the most intriguing findings is that an acto-myosin 

network plays a role in gene transcription. However, the in vivo role of such proteins in 

gene expression is still largely unclear. During my PhD I developed a technical approach 

coupling MNase digestion to ChIP by which I showed that the enhancer and minimal 

promoter of the human uPA gene function as a single transcription control unit forming a 

stable structure, that is required to sustain the early elongation step of RNAP-II. I next 

studied the uPA gene in an inducible cell system showing that it is associated with an 

inactive RNAP-II transcription factory before the onset of its expression while 

transcriptional induction promotes its association with an active transcription factory. This 

finding indicates inactive factories as distinct entities from the active ones supporting the 

notion of specialized transcription factories. I also studied the involvement of MyosinVI in 

transcription, characterizing its role in regulating RNAP-II activity. MyosinVI is required 

for phosphorylation of RNAP-II CTD at level of Serin-2 that, in turn, is required for the
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enzyme to proceed in the elongating phase. Finally, I showed that the transcription factor 

Prepl and MyosinVI are associated in a complex and that the recruitment of MyosinVI on 

the Prepl-target genes is mediated by the transcription factor itself.
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INTRODUCTION

1.1. Transcription is regulated at multiple levels.

The regulation of gene expression is a fundamental problem in modern biology because all 

biological events depend on the correct transcriptional onset of subsets of genes. 

Eukaryotic gene transcription is a remarkably complex biochemical multi-step process, 

each one which is tightly regulated. During the life of every organism the activation of 

specific gene expression programs in development and cellular differentiation, is the result 

of an intricate regulatory network. Local chromatin remodeling, as well as the correct 

recruitment of the transcriptional machinery, is known to be crucial steps and their 

synergistic action eventually determines the correct gene regulation (Lemon and Tjian, 

2000). However, recent lines of evidence show that also nuclear architecture can influence 

genome regulation (Misteli, 2007) making clear that the modulation of gene expression 

programs involve different levels of structural organization in the cell nucleus (Misteli, 

2007).

1.2. Long range interaction of cis control elements.

At the most basic level gene expression is controlled through the action of DNA regulatory 

elements. Eukaryotic genes contain complex arrays of specific sequences that combine
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more commonly shared core promoter elements with largely different gene-specific cis- 

elements called enhancers. Both these sequences are required and cooperate to define 

different expression patterns (Dynan, 1989) through the recruitment of the general 

transcriptional machinery, including RNAP-II and a large number of transcription factors 

and cofactors with chromatin-modifying activities (Lemon and Tjian, 2000). The 

enhancers have been defined as elements that can increase transcription irrespective of 

their orientation and position relative to the transcription start site (Dillon and Sabbattini, 

2000). It is well known that these regulatory elements can be located at considerable 

distances (up to one megabase or more) from the genes they regulate (Chakalova et al., 

2005). Other control elements such as insulators, silencers and LCRs, which play a 

fundamental role in the control of many complex genetic loci, also regulate gene 

expression over long distances (Grosveld, 1987; Sun and Elgin, 1999; West et al., 2002).

1.2.1. Models for long-range interaction.

Since the initial discovery of distal regulatory sequences, a debate has focused on how 

such elements communicate their regulatory effects to the linked genes over large spans of 

intervening DNA. Two main models were proposed: the “looping” and the ’’linking” 

model (Hatzis and Talianidis, 2002). In the former, transcriptional activators bound to the 

enhancer directly contacted other factors bound to the promoter, causing the looping of the 

IVS (see Figure 1.1). In the latter, the establishment of modified chromatin domains 

between the enhancer and the promoter was achieved through the action of facilitator 

proteins that generated a progressive chain of higher order complexes over the chromatin 

fiber of the IVS (see Figure 1.1). Other models extended those reported above, differing



only in the manner in which the contact between enhancer and promoter is established. In 

the “tracking” model (Hatzis and Talianidis, 2002), for instance, a complex recruited on 

the enhancer slides along the IVS and eventually contacts the promoter (see Figure 1.1). In 

another model the progressive chain of higher order complexes over the chromatin fiber of 

the IVS causes its bending and allows the contact between the regulatory regions (see 

Figure 1.1) (Hatzis and Talianidis, 2002).

looping

tracking

-€K
linking 

and looping
linking

Burger et al. 2002 Nat. Genet.

Figure 1.1. Scheme of long range interaction mechanism between distal regulatory 
sequences.
The figure shows the main interaction models of distal regulatory elements like an 
enhancer (yellow box with E) and the promoter (violet ball with P) of a gene (pink box).
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1.3. Transcriptional regulation by organization of the chromatin three- 

dimensional looped structure.

Despite these models have been speculated about for years, only recently the mechanism of 

long-range interaction has been partially solved. In fact thanks to two novel techniques, the 

RNA TRAP (Figure 1.2) and the 3C (Figure 1.3), the spatial proximity of distal genomic 

elements was shown for the first time for the |3-globin locus in erythroid cells, implying the 

looping out of the 50 Kb long IVS (Carter et al., 2002; Tolhuis et al., 2002). Since then, 

other loci have been found to be folded into looped structures, in which distal enhancers 

are in close proximity to the promoters of the relevant genes (Eivazova and Aune, 2004; 

Liu and Garrard, 2005; Spilianakis and Flavell, 2004). However, the looping between 

distal regulatory regions is not a peculiarity of actively transcribed gene. In fact, other 

regulatory elements, such as silencers, insulators and boundary elements are also involved 

in the formation of loops that, in turn, might exert their function limiting (or favoring) the 

interaction of enhancers to their target gene promoters. For example, differentially 

methylated regions, known to be involved in the control of imprinted gene expression, 

seem to be important in setting up specific loop structures that might partition nearby, 

differentially expressed genes into distinct loops of active versus silent domains (see 

Figure 1.4A) (Murrell et al., 2004). So rather than a prerequisite of actively transcribed 

gene, looped higher order structures have to be thought of as general features of the 

genome organization (Marenduzzo et al., 2007), generated by the contribution of different 

regulatory sequences. This complex three-dimensional structure would reflect the 

transcriptional program of the cell, in which genes may result in an “on” or “off” state
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according to their local retention within specific neighborhoods with active versus silent 

features (Dillon, 2006; Misteli, 2007), as schematized in the model shown in Figure 1.4B.

B

E

I
V\W

otigo/hapten 
pre-m RNA 

■&' nucleosome

RNA pol II
a Fab/HR P

 ̂ biotin/tyram ide

Carter, D. et al. 2002 Nat. Genet.

Figure 1.2. RNA TRAP.
In this technique (Carter et al., 2002) (A) nuclei are isolated and after formaldehyde 
fixation (B) hybridized with a digoxigenin-labeled oligonucleotide probe specific for a 
nascent, unprocessed mRNA. (C) Horseradish peroxidase-conjugated antibodies against 
digoxigenin are then used to localize horseradish peroxidase enzymatic activity to the site 
of transcription. (D) Biotin-tyramide is added to the sample and is activated by horseradish 
peroxidase, resulting in the covalent linkage of biotin to electron-rich moieties on proteins 
in the same region. (E) At this point, the cells are disrupted by sonication to fragment the 
chromatin and (F) biotin-conjugated chromatin fragments are isolated by affinity 
chromatography on a streptavidin column. (G) The enrichment of specific genomic 
sequences bound to the column can then be determined by quantitative PCR.



Cells

PCR assay

t
i
1

Formaldehyde
cross-linking

Lyse cells

Restriction

Enzyme Digestion

t Ligation at low 
concentration

Liu, Z. et al. 2005 Mol. Cell Biol.

Figure 1.3. Chromosomal Conformation Capture (3C).
In this technique (Dekker et al., 2002) the cells are treated with formaldehyde to crosslink 
proteins to DNA or other nearby proteins and than lysated. The genomic DNA in cross- 
linked DNA-protein complex is then subjected to restriction enzyme cleavage. Digestion is 
followed by ligation at low DNA concentrations. Under these conditions, ligations between 
crosslinked DNA fragments is favored with respect to the ligation of random fragments 
because of their close spatial proximity. After ligation, the crosslinks are reversed and 
ligation products are detected and quantified by PCR.
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A B

Maternal
DMR1

CT

CT

Paternal

DMR-ll Igf2 DMR2

J
CT

Murrel, A. et al. 2004 Nat. Genet. Fraser, P. 2006 Curr. Opin. Genet. Dev.

Figure 1.4. Organization of the chromatin fiber in looped structures tether genes into 
distinct loops of active versus silent domains.
(A) Parent-specific interactions between distinct Differentialy Methylated Region (DMR) 
provide the transcriptional switch for Igf2. In the maternal allele the unmethylated H19 
DMR interacts (through CTCF) with the Igf2 DMR1, segregating Igf2 in an inactive 
domain (shaded area). Conversely, in the paternal allele the interaction between DMR2 and 
DMR relocate Igf2 in an active chromatin domain as shown. (B) The complex three- 
dimensional structure organization reflects the transcriptional program of the cell. 
Chromatin fibers that contain genes are organized in different loops and are retained within 
specific neighborhoods with active (big spheres) or silent (small spheres) domains through 
the interaction with specific protein resulting in their “on” or “off’ transcriptional state.

1.4. Nuclear compartmentalization.

The fact that in the nucleus there are no “membrane-enclosed” sub-compartments, such as 

the endoplasmic reticulum or the Golgi apparatus in the cytoplasm, led to the notion that 

functions and molecules were randomly distributed in this organelle. Instead, several lines 

of evidence showed the structurally and functionally complex organization of the 

eukaryotic cell nucleus interior. Most nuclear events do not occur ubiquitously throughout
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the nucleoplasm, but are limited to specific and spatially defined sites (Lamond and 

Spector, 2003; Misteli, 2005). The nuclear volume contains morphological distinct higher- 

order chromatin domains, such as condensed heterochromatin, and a number of 

membraneless proteinaceous subcompartments, including the nucleolus, speckles, PML 

bodies, Cajal bodies, etc., that contain several nuclear components (Dellaire and Bazett- 

Jones, 2004; Handwerger and Gall, 2006). The physically distinct nature of each 

compartment not only contributes to the spatial partition of the nuclear volume, but also 

creates distinct functional subdomains within the nucleus. An additional layer of 

complexity is generated by the non-random spatial organization of the genome itself 

(Misteli, 2007). However, the functional significance of spatial positioning is not yet 

known and it represents one of the big challenges in modern molecular biology.

1.5. Chromosome territories and nuclear position.

The chromosomes contain the whole genome. In early microscopy studies it was readily 

observed that during mitosis all chromatin fibers of the chromosomes were tightly 

packaged yelding the typical “X” shape. However, once the cell enters interphase the 

chromosomes unfold and become entangled. A more organized view of the spatial 

organization of mammalian chromosomes in interphase came later from a study in Chinese 

Hamster cells. Small portions of the nucleus were irradiated with UV laser light and the 

damaged sites were visualized at the following metaphase. Instead of obtaining a signal 

scattered across several chromosomes, the authors observed the discrete labeling of only a 

few chromosomes (Figure 1.5) (Cremer et al., 1982), which suggested that chromatin was 

highly compartmentalized within the nucleus. However, direct visualization of



chromosomes in interphase nuclei was achieved only after the development of whole 

chromosome paint probes, in combination with FISH. This approach definitively showed 

that each chromosome occupied a spatially defined nuclear sub-volume, named CT (Figure 

1.6). Further studies reported that these territories are non-randomly arranged within the 

nuclear space, but occupy preferential positions relative to the center of the nucleus 

(Parada and Misteli, 2002). Small chromosomes tend to occupy more central nuclear 

positions and bigger ones are positioned toward the nuclear periphery (Bolzer et al., 2005). 

Similar correlations have also been made for the nuclear radial positioning of 

chromosomes depending on their gene density. Experiments performed in lymphocytes 

showed that gene-poor chromosomes are more peripheral than gene-rich chromosomes, 

located in the nuclear interior (Boyle et al., 2001).

13



A
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damage
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Chromosome territory model

Laser
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t
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B
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Meaburn, K.J. et al. 2007 Nature

Figure 1.5. Scheme of the experiment used to show the existence of chromosome 
territories.
(A) Thomas and Christoph Cremer used a microlaser approach to induce local genome 
damage. The prediction was that inflicting DNA damage within a small volume of the 
nucleus would yield different results, depending on how chromosomes were arranged. 
Occupation of distinct territories (A, left panel) will result in the fact that only a small 
subset of chromosomes will be affected by the localized damage, whereas if the chromatin 
fibers of each chromosome were randomly distributed throughout the nucleus (A, right 
panel), many chromosomes would be damaged. In panel (B) are shown metaphase 
chromosomes recovered after laser damage. Only a subset of the chromosomes was 
damaged, as indicated by the black grains of radioactivity, most prominently indicating 
that chromosomes are not randomly distributed, but occupy a defined position.

14



Oliver, B. and Misteli, T. 2005 Genome Byology

Figure 1.6. Chromosome detection using paint probes.
The figure shows liver cells stained with probes specific for Chromosome 12 (green) and 
chromosome 15 (red). DNA is stained in blue. Chromosomes are clearly organized in 
chromosome territories, occupying a discrete sub-volume in the nucleus.
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1.5.1. Structural organization of the CT.

The discovery of the discrete territorial organization of chromosomes in the nucleus during 

interphase prompted to appreciate the importance of the genome nuclear 

compartmentalization for gene transcription. How are genes and regulatory regions 

organized within the CTs and how does this partition affect transcription? Because of their 

functional relevance, the structural organization of CTs has been carefully investigated 

using different approaches leading to different models.

1.5.2. CTs are inter-connected by a network of channels: the inter- 

chromatin domains.

Initial studies, aimed at mapping sites of transcription relative to the CT, showed that 

transcriptionally active genes are preferentially positioned outside to the CT area (Zirbel et 

al., 1993). Conversely, inactive genes were located inside the CTs (Zirbel et al., 1993). 

This finding was supported by other studies showing that specific chromatin segments, 

corresponding to coding sequences, were often located near the periphery of the CTs and 

non-coding sequences were found inside the CTs (Kurz et al., 1996). These lines of 

evidence led to a model in which the genome is organized in CT-IC shown in Figure 1.7. 

In this model active genes are located at the periphery of CTs, in a space called inter­

chromosome domain, where they would be accessible to transcription and splicing factors 

(Cremer et al., 1993). Since inactive chromatin remains inside CTs the model hypothesized
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that such positioning would reduce the accessibility of the genomic regulatory sequences to 

transcriptional machinery.

Figure 1.7. Scheme describing the CT- Inter-Chromosome (IC) model.
In (A) CTs are shown separated from each other by an inter-chromosomal space. (B) The 
enlargements shows that this space is rich in the transcriptional machinery and RNA 
processing factors (white and black circles respectively). The genes that are located in this 
space interact with the molecular components of the transcriptional machinery determining 
its active state wile the positioning of gene inside the CTs would prevent such interaction 
and is associated with their inactive state.

Other observations showed that some genes looped out of their CTs upon activation 

(Chambeyron et al., 2005; Volpi et al., 2000), whereas silenced genes occupied an internal 

position to the CT as in the case of “X” chromosome inactivation during ES cell 

differentiation (Chaumeil et al., 2006). However, it is now known that transcription is 

scattered all over the nucleus, including inside the CTs (Abranches et al., 1998; Branco and 

Pombo, 2006; Verschure et al., 1999). In light of these lines of evidence a model in which 

CTs are subdivided into 1 megabase pairs (Mbp) chromatin domains”, that constitute a

A B
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level of chromatin fiber organization above 30 nm was proposed (Figure 1.8) (Cremer and 

Cremer, 2001).

inttercttronurtin compartmenl 
wfth m»eromo«ftcui*r complex#* 
for ir»n®ct»pt or> tpfccfcig. 
ONA-roplicatbon. and rapair

t'XiniTS

Figure 1.8. Scheme describing the “1 Mbp chromatin domains” composition of CT-IC 
model.
CTs are composed of “~lMbp chromatin domains” which, in turn, are made by “~100 Kbp 
chromatin domains”. The IC compartment (containing molecular complexes necessary for 
transcription) extends into CT contacting the surface of the “~100 Kbp chromatin 
domains” where active genes are located. Inactive genes are located inside the “~100 Kbp 
chromatin domains”

In this model the IC are represented as a network of gaps between chromatin domains, 

allowing proteins to reach the inner portion of CTs. So the IC part of the acronym CT-IC
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indicated the inter-chromatin domain compartment (rather than inter-chromosome domain 

compartement). There are no experimental evidences showing how chromatin is organized 

in these IMbp domains. The model suggests that each IMbp domain is built as a rosette of 

small loops, termed “~100 kilobase pair (Kbp) chromatin domains”, which are in contact 

with the inter-chromatin compartment (Cremer et al., 2006). An important aspect of the 

CT-IC model is that both CTs and also ICs exhibit little or no intermingling between them 

(Cremer et al., 2000).

1.5.3. CTs as a net of chromatin fibers: the lattice model.

Early electron microscopy studies on the structure of isolated chromatin fibers revealed 

structures with a 10 nm diameter, which were shown to further fold into 30 nm fibers 

(Dehghani et al., 2005). However, visualization of such structures in the interphase 

mammalian nucleus was hampered by the lack of contrast between chromatin and all of the 

proteins and RNA present in the nucleus. Different staining methods were developed to 

provide such contrast, but yet they did not provide a global high-resolution picture of 

chromosome organization (Dehghani et al., 2005). An improvement was obtained by using 

ESI, although the results obtained by ESI did not show the IMbp looped domains and, 

thus, did not support the CT-IC model (Dehghani et al., 2005). However, the ESI technique 

confirmed earlier electron microscopy studies showing that chromatin was mainly 

organized in 10 and 30 nm fibers without a particular structure organization (Dehghani et 

al., 2005). These evidences led to the proposal of yet another model to explain the CTs 

structure called “Lattice”(see Figure 1.9).
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Figure 1.9. Scheme showing the Lattice model.
This model proposes that interphase chromosomes are organized as a network of lOnm and 
30nm fibers. There are no large channels or gaps devoid of chromatin, but only the small 
spaces within the Lattice structure. This kind of organization would provide enough 
accessibility for macromolecules to interact with the genes. Moreover chromatin fibers 
from different CTs would intermingle at CT boundaries.

In this model each chromosome maintains its own (limited) space in the nuclear volume, 

but is organized in a relatively uniform net of chromatin fibers. This is in agreement with 

experiments showing that the nuclear volume is fully accessible to macromolecules 

moving by diffusion (Verschure et al., 2003). Importantly, the lattice model does not 

support the existence of channels, as postulated by CT-IC model, and suggests that folding 

of chromatin into a 30 nm fiber would be sufficient to regulate gene activity inside the of 

CTs. Recently, long-range interactions between regulatory elements on the same 

chromosome (or on different chromosomes) have been described, revealing extensive 

interactions across the genome (Fraser, 2006). The degree of genome flexibility and 

dynamics, suggested by the detection of inter-chromosomal associations, points to a higher 

degree of intermingling between CTs than initially thought. New insights on this issue
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come form a recent publication (Branco and Pombo, 2006) in which the authors show a 

significant degree of intermingling between CTs corresponding to approximately 20% of 

the nuclear volume (Branco and Pombo, 2006).

A

B

te rn ary

JigSppf
1 - Structural attachements (e.g. nuclear lamina)
2 - Intrachromosomal contacts maintained by tethering
3 - Intrachromosomal mixing by constrained diffusion
4 - Interchromosomal contacts maintained by tethering
5 - Interchromosomal mixing by constrained diffusion
6 - Chromatin loop extends deeper into another territory

Figure 1.10. Scheme showing an updated version of the Lattice model.
This model incorporates recent findings about intra- and inter-chomosomal associations 
with respect to chromosome organization. (A) Functional interactions within the same CT 
and between different CTs might be mediated by RNAP-II or other nuclear components 
(e.g. nuclear lamins) which together with the physical properties of the chromatin fiber 
would influence nuclear distribution of CTs. (B) Functional interactions between CTs 
would be mediated by RNAP-II transcription factories. In fact simultaneous labeling of 
chromosome 3 (Chr3, red), of the whole genome except of chromosome 3 (WG-3, blue) 
and RNAP-II (Pol II green) reveals that intermingling areas contain RNAP-II foci.
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This evidence suggested a new arrangement in interphase nuclei in which chromatin fibers 

branch out from CTs that maintain their spatial position and intermingle with fibers from 

other CTs that occupy a different nuclear space (see Figure 1.10). This view is consistent 

with different reports in which large chromatin loops were located far from their respective 

CT, as shown in Figure 1.11 (Chambeyron et al., 2005; Mahy et al., 2002; Volpi et al., 

2000).

Untreated 4 days RA treatment

v

H o x b l  MMU11

Chambeyron, S. et al. 2004 Genes Dev.

Figure 1.11. Changes in chrom atin structure at HoxB locus after RA induced 
differentiation in ES cells.
In undifferentiated ES cells, the Hoxbl gene (red staining) is condensed with the MMU11 
CT (green staining). However, the HoxBl gene is at the edge of the territory, poised to 
respond to transcriptional induction by RA. After 4 days of induction with RA, the 
chromatin fiber containing HoxBl decondenses, and the gene is extruded from the CT. 
Nuclei are stained with DAPI (blue staining).
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Moreover, inter-chromosome proximity may favor translocation events and, thus, the 

development of aberrant karyotypes observed in many cancers (Branco and Pombo, 2006).

1.6. Nuclear spatial organization of transcription: transcription factories.

Transcription, as well as other nuclear processes, is a compartmentalized event. Pulse 

labeling experiments of nascent RNA showed that transcription does not occur 

homogeneously throughout the nucleoplasm, but appears to be concentrated in distinct sub- 

nuclear foci (Figure 1.12) (Jackson et al., 1993; Wansink et al., 1993).

Figure 1.12. Transcription is concentrated in sub nuclear foci.
Experiment showing BrUTP incorporation in the nucleus. Cells are permeabilized and 
incubated with a physiological buffer containing BrUTP. BrUTP incorporation in to 
nascent RNAs can be detected with specific anti-BrUTP antibodies. The confocal image 
shows that nascent transcripts are clustered in defined spots (in red) indicating that 
transcription is restricted to distinct nuclear foci.
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It was long assumed that this distribution represents elongating RNAP distributed along 

genes. It is now clear that these sites correspond to subnuclear transcription centers (Cook, 

1999; Osborne et al., 2004). In normal cell lines active RNAP molecules are estimated to 

be approximately 65,000, whereas transcription sites are less that 10,000 (Cook, 1999). 

The limited number of transcription sites per nucleus as compared to the larger number of 

active RNAPs led to the prediction that more than one RNAP is present in each focus 

(Jackson et al., 1998) and, thus they were called “transcription factories”. The 

consideration that most active genes are associated with only one active RNAP at any 

given time, allowed to predict that each transcription factory would simultaneously 

transcribe more than one gene (Cook, 1999). Recently this model was supported by 

experiments showing that genes as far as 40 Mb apart often co-localize in a shared factory 

when transcribed (Osborne et al., 2004).

1.6.1. Transcription factories: Importance of clustering transcription in a 

spatially defined fashion.

The ordered assembly of the transcription pre-initiation complex was originally proposed 

on the basis of the formation of active transcription complexes in vitro (Buratowski, 1994). 

It was observed that a stepwise addition of purified basal factors was required for promoter 

binding and transcriptional initiation from naked DNA templates. Moreover, the direct or 

indirect interaction of activators with constituents of the general transcriptional machinery, 

have long been observed to affect the rates of complex formation and, in turn, of 

transcription (Chi et al., 1995; Horikoshi et al., 1988; Lin and Green, 1991). The large 

number of additional co-factors observed to interact with the core machinery and required
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to regulate activated transcription would render an initiation complex extremely large 

(Inostroza et al., 1992; Kim et al., 1994; Nakajima et al., 1997). Therefore considering the 

limited concentration of effectors in the nucleus and the structural problem exerted by the 

multiple levels of genome organization, it would appear that such an assembly is unlikely 

or, at least, inefficient. Thus the assembly of such complex on the large number of active 

promoters at any given time in the cell would not occur in a feasible time scale. Clustering 

of the transcription process in transcription factories, on the other hand, ensures that the 

local concentration of RNAPs and promoters is high, enabling them to interact efficiently 

(Cook, 1999). For example in HeLa cells the RNAP-II is present in a dispersed pool at a 

concentration of ~ 1 piM. However, the concentration of the sub-fraction locally associated 

with transcription factories is ~ 1000-fold higher (Cook, 2002). This would appear 

particularly useful in the case of functionally linked genes or of inducible arrayed genes, 

where the compartmentalization of transcription might facilitate the responsiveness to 

signaling cascades, leading to transcriptional activation, by obviating to the limited nuclear 

concentration of individual transcriptional components (Cook, 1999; Misteli, 2007).

1.6.2. Specialized transcription factories.

Many lines of evidence suggest that different transcription factories may specialize in the 

transcription of different groups of genes. Nucleoli represent a distinct nuclear 

compartment where the 45S rRNA genes and all the machinery essential for its 

transcription are localized and provide an important evidence in support of this issue 

(Martin and Pombo, 2003). Human loci encoding rRNA (contained in several tandem 

repeats) are located on chromosomes 13, 14, 15, 21 and 22, with each locus carrying a
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NOR that promotes their association with nucleoli even when they are inactive (Sullivan et 

al., 2001). A typical nucleolar factory in HeLa cells contains ~ 500 RNAP-I molecules 

engaged around four templates and was shown to have a peculiar sub- 

compartmentalization with areas dedicated to storage, RNA synthesis and processing 

(Hozak et al., 1994; Jackson et al., 1998). Also RNAP-II and RNAP-III gather in 

transcription factories, although they are smaller than those found in nucleoli and are 

devoid of a particular substructural organization. Different approaches suggested that 

factories containing RNAP-II do not contain RNAP-III and, thus, localize to spatially 

distinct foci (Martin and Pombo, 2003; Pombo et al., 1999). Whether RNAP-II 

nucleoplasmic factories further specialize in the transcription of particular gene sets is yet 

not known. However, that different transcription factories contain distinct set of 

transcription factors and cofactors components, and thus create a specific transcriptional 

environment (Bartlett et al., 2006; Misteli, 2007) is a very attractive hypothesis. Recent 

results showing that some of the genes expressed in the erythroid lineage (Hbb-bland Eraf) 

(distant 25 Mbp from each other) share the same RNAP-II factory corroborate such an idea 

(Osborne et al., 2004). Nevertheless, to date there are no evidences showing functional or 

structural specificity among RNAP-II transcription factories. Thus the question on the 

“specialization” between RNAP-II transcription factories is still open.
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1.6.3. Active genes undergo on and off cycles of transcription depending 

of its association with a transcription factory.

From a functional standpoint, genes are assumed to be either active or inactive depending 

on the detection of a specific mRNA. In this simplistic view, an active gene is continuously 

transcribed when associated with the transcriptional machinery until a negative signal stops 

this process and determines its inactivation. However, a detailed RNA FISH analysis of 

several genes showed that many active genes are not continuously transcribed (Levsky et 

al., 2002; Ross et al., 1994). They seem to go through on/off transcription cycles, spending 

more time in the off state than in the on state (Osborne et al., 2004). The transcription of a 

given gene occurs in pulses of a certain frequency in each cell. This implies that, at any 

given time, different cells of the same population will have similar, but not identical, 

subsets of actively transcribed genes. Importantly, the actively transcribed genes localize to 

transcription factories, whereas temporarily non-transcribed gene do not (Osborne et al., 

2004). These evidences suggest a model in which the “on” state correlate with factory 

occupancy and the “off” state with the relocation away from the factory, as shown in the 

Figure 1.13 (Osborne et al., 2004).
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Figure 1.13. Model of dynamic associations of genes with transcription factories.
In the scheme chromatin loops (black) are distinct from the rest of CT (gray). Transcribed 
genes (white portion of the loop) are recruited to transcription factories (black circles) 
whereas untranscribed genes are located away from the factory. The model suggests that 
gene transcription correlates with its recruitment in the transcription factory. The 
association with factories is dynamic and genes goes through waves of “on’7“off” phases. 
This implies that a given gene will be “more transcribed” than another when it will be 
associated with a transcription factory more frequently or for more time spans (Fraser, 
2006).

1.7. RNAP-II activity and carboxy-terminal domain phosphorylation.

In eukaryotes RNAP-II enzyme transcribes protein-coding genes. The vast majority of 

studies aimed at elucidating the molecular mechanism of transcriptional regulation by 

RNAP-II focused on the early stages of the process, such as the formation of the PIC and 

initiation. However, the finding that many steps of RNA processing and maturation are
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modulated through interactions with the RNAP-II transcriptional elongation complex 

generated a more focused attention on the relevance of this enzyme (Sims et al., 2004). 

RNAP-II exists in a hypo- or hyper-phosphorylated state (IIA and IIO respectively) 

(Dahmus, 1981). Phosphorylation targets the CTD of Rpbl, the largest subunit of RNAP- 

II. The CTD is made up of multiple tandem repeats (from 26 in yeast to 52 in Human) of 

the evolutionarily conserved heptapeptide sequence Y1S2P3T4S5P6S7 (Corden, 1990) and is 

essential for life (Corden, 1990). The structural conservation of CTD in tandem repeats is 

also crucial as the insertion of an alanine residue between heptapeptide sequences is lethal 

in yeast, whereas the insertion of the same aminoacid between heptapeptide pairs can be 

tolerated (Stiller and Cook, 2004). Early experiments clarified that the 

hyperphosphorylated state of RNAP-II was associated with the enzyme activity 

(Christmann and Dahmus, 1981) and that it was distributed in discrete foci throughout the 

nucleus, where it colocalized with nascent transcripts (Cook, 1999; Iborra et al., 1996; 

Wansink et al., 1993). Biochemical experiments showed that the IIO form, differently from 

the IIA form, is highly insoluble as it is resistant to various extraction procedures (Kimura 

et al., 1999). Importantly, RNA run-on experiments performed with soluble extracts, 

containing the IIA form of the protein, and with the resulting pellets containing the IIO 

form showed that all the activity was essentially retained in the pellets, suggesting that the 

hyperphosphorylated form corresponds to the active RNAP-II (Kimura et al., 1999). “In 

vivo” FRAP experiments performed with a GFP tagged RNAP-II protein, confirmed with 

FLIP experiments, unexpectedly showed that the enzyme had a rapid diffusion kinetic 

(Kimura et al., 2002). On the other hand two kinetically distinct fractions were detected: 

one faster and the other slower corresponding to the free (IIA) and engaged (IIO) form of
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RNAP-II respectively (Kimura et al., 2002). This implies that the enzyme engaged in the 

transcription factories (Cook, 1999) exchanges with the soluble fraction (Misteli, 2001a). 

Phosphorylation of the RNAP-II CTD occurs on serine 2 and serine 5 of the repeats, 

although the two different modifications are not equivalent (Sims et al., 2004). In 

particular, the form phosphorylated at serine 5 (CTD-S5p) corresponds to a poised form of 

RNAP II and is commonly found enriched on the promoter of active genes, while the form 

phosphorylated at serine 2 (CTD-S2p) corresponds to the elongating form of the enzyme 

and is typically associated with the internal portions of transcribed genes (Gomes et al., 

2006; Komarnitsky et al., 2000; Sims et al., 2004). Transcription enters the initiation phase 

when RNAP-II is phosphorylated at CTD-S5p becoming poised, and a further 

phosphorylation event at CTD-S2p determines the transition to the elongation phase 

(Gomes et al., 2006; Komarnitsky et al., 2000; Sims et al., 2004).

1.8. Nuclear positioning of genes during transcriptional activation.

The association of genes with the nuclear periphery is generally considered a hallmark of 

silencing, as transcriptionally silent heterochromatin is preferentially located at the edges 

of the nucleus in many organisms (Misteli, 2004). Moreover, many evidences show the 

existence of a link between the nuclear radial position of a gene and the regulation of its 

expression. An example is the gene for the CFTR that is associated with peripheral 

heterochromatin in cells where the locus is silent (Zink et al., 2004). On the other hand, the 

locus dissociates from the periphery and moves towards the inner part of the nucleus in cell 

types where CFTR is expressed (Zink et al., 2004). Additional evidence for a role of 

peripheral localization of gene silencing comes from studies in which several



differentiation-specific genes were found near the nuclear periphery in their inactive state 

(Brown et al., 1999; Kim et al., 2004; Kosak et al., 2002; Skok et al., 2001). However, 

although many genes show preferential positioning relative to the nuclear center, this 

position may not be critical for function. In fact, in a cell population some genes can be 

found at virtually any position in the nucleus regardless its active or inactive state (Bartova 

et al., 2000; Kim et al., 2004; Kozubek et al., 2002; Roix et al., 2003). It seems more likely 

that the positioning observed for some loci is largely the consequence of the positioning of 

chromosomes to which the gene belongs. A complex relationship seems to exist between 

transcription and the position of genes within the CT and both the dissociation from 

territories, as well as the preferential positioning of genomic regions at the surface of CTs, 

has been suggested to contribute to proper gene function (Chambeyron and Bickmore, 

2004b; Ragoczy et al., 2003). In human and mouse cells several loci in the genome have 

been characterized by FISH experiments, showing that they are extruded from their CTs 

and loop several micrometers away from the main body of chromosomes (Mahy et al., 

2002; Volpi et al., 2000; Williams et al., 2002). Multiple lines of evidence suggest that 

there is a correlation between transcriptional activity and the location outside of CTs of 

some genes (Chambeyron and Bickmore, 2004b; Mahy et al., 2002). This is the case for 

the HoxB cluster in mouse ES cells, where the sequential activation of the genes of the 

cluster following RA treatment is associated with the gradual protrusion of the chromatin 

fiber that contains the locus from the CT as shown in Figure 1.11 (Chambeyron and 

Bickmore, 2004a). Although the role of positioning in gene function is still unclear, it is 

tempting to speculate that the relocation of genes away from CT may be required to move 

it toward a factory, as proposed by (Osborne et al., 2004) (Figure 1.13).



1.9. What are the molecular ties that determine nuclear genome 

organization?

The complex spatial organization of the nucleus has given rise to the provocative concept 

that a defined structure, in the form of a karyoskeleton or matrix, may contribute to 

spatially organize the multitude of nuclear compartments (Nickerson, 2001; Pederson, 

2000). Many protein molecules have been found implicated in affecting nuclear 

architecture, but the definition of such a nuclear scaffold remains elusive. It has been 

reported that the over-expression of the non-chromosomal protein EAST in Drosophila it 

causes alterations in the nuclear architecture, determining the expansion of the 

extrachromosomal space and of the whole nucleus (Wasser and Chia, 2000). This 

suggested that the protein might be part of a putative nuclear skeleton, or at least to be 

involved in the control of its expansion. In human thymocytes the protein SATB1 appears 

to form a cage-like network of proteinaceous filaments to which genes can be attached (Cai 

et al., 2003). Obvious candidates as scaffold components are the well-characterized lamin 

proteins. This protein family is known to form a structural meshwork underlying the 

nuclear envelope, referred to as the nuclear lamina (Goldman et al., 2002). Recent 

observations strongly suggest that lamin A, B and C are not selectively restricted to the 

nuclear periphery, but protrude also toward the nuclear interior and are functionally 

important for transcription and replication processes (Goldman et al., 2002; Kumaran et al., 

2002). However, lamin A and C do not seem essential for the formation of the splicing 

factor compartment and other nuclear bodies (Vecerova et al., 2004) and to date it is 

unclear what it should be their contribution to the inner nuclear structures. A further



prominent candidate as a structural component of the karyoskeleton is actin. Filamentous 

actin has been shown to be present in the nucleus (McDonald et al., 2006) and, moreover, 

many evidences support its fundamental role in transcription (de Lanerolle et al., 2005). 

Transcription levels are affected by the use of reagents that block actin filament formation, 

albeit no global reorganization of transcription sites has been observed (McDonald et al., 

2006). The difficulties in defining a static nuclear skeleton and the highly dynamic nature 

of the nuclear architecture has lead to suggest that the molecular constituents of the nucleus 

possess “self organizing” capabilities (Cook, 2002; Misteli, 2001b). The model predicts 

that the morphological appearance and spatial organization of a self-organizing system is a 

reflection of the sum of all ongoing functions (Cook, 2002; Misteli, 2001b). At the same 

time the resulting structural features support and enhance ongoing activities in a self­

reinforcing manner. In favor of this model are evidences showing that inhibition of a 

specific nuclear process (e.g. transcription) abolishes looping and determines a general de­

condensation of the genome (Marenduzzo et al., 2007). In this context the clustering of 

active RNAPs molecules in transcription factories would directly contribute to genome 

organization, suggesting that RNAPs and transcription factors may act as molecular ties 

(Cook, 2002).

1.10. The acto-myosin system: new players in transcriptional regulation.

One of the most intriguing developments in the field of gene regulation is that structural 

proteins, mainly cytoplasmic, such as actin and myosins, play an important role in
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transcription (de Lanerolle et al., 2005). Early studies showed evidences that actin was 

implicated in transcription (Egly et al., 1984; Scheer et al., 1984). However, biochemical 

observations supporting this idea encountered strong criticism, mainly because nuclear 

preparations were thought to be contaminaited by cytoplasmic actin. Moreover the use of a 

classic tool, like phalloidin staining, to detect actin filaments in the nuclear compartment 

failed to reveal such a structure, although it was clearly visible in the cytoplasm. Several 

recent publications show that actin is found associated with all three RNAPs and that it 

modulates their activity (Hu et al., 2004; Philimonenko et al., 2004). Moreover, other 

proteins, like NMI, Myosin VI and N-WASP, have been reported to be present in the 

nucleus and to modulate transcriptional activity (Philimonenko et al., 2004; Vreugde et al., 

2006; Wu et al., 2006). These findings prompted the speculation that an acto-myosin 

mechanism is implied in transcriptional regulation. However, the in vivo role of actin and 

myosins in gene expression is still largely unclear.

1.10.1. Nuclear actin.

Important clues concerning the role of nuclear actin came from the identification of its 

interactors. Many Swi/Snf-like complexes and histone-modifying factors have been found 

associated with actin in different organisms (Bettinger et al., 2004; Olave et al., 2002). 

These results argue in favor of a functional link between actin and the regulation of 

chromatin structure (Bettinger et al., 2004; Olave et al., 2002). As mentioned above, actin 

is associated with all three RNAPs and anti actin antibodies reduce the activity of RNAPs 

in vivo as well as in vitro (Philimonenko et al., 2004), suggesting that the role of actin in 

the three different systems would be similar. RNAP-I abortive transcription-initiation
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assays have shown that antibodies against actin do not affect the incorporation of the first 

nucleotide by the enzyme. However, they do inhibit the subsequent elongation step, since 

further incorporation of nucleotides is abolished (Philimonenko et al., 2004). Actin also 

associates with hnRNPs (Kukalev et al., 2005), a family of proteins involved in pre-mRNA 

processing and in the transport, localization and stability of mRNA (Dreyfuss et al., 2002). 

This suggests that actin is involved in a process that occurs shortly after transcription 

initiation. However, an alternative interpretation of the results would suggest that the steric 

hindrance of the actin-bound antibodies could affect only the recruitment of a subset of 

specific cofactors, required in defined steps of transcription. This would imply that actin 

might have a different role in multiple steps of the transcription process. In fact actin is 

associated with both active and inactive RNAP-I, unlike NMI that is associated only with 

the complex containing the active enzyme (see next paragraph). A feasible hypothesis 

might be that the fundamental function of actin in transcription is to mediate dynamic 

protein-protein interactions and to act as an allosteric factor in the remodeling of large 

multimolecular complexes, such as the transcriptional apparatus.

1.10.2. Nuclear Myosin I.

NMI was the first myosin found in the nucleus (Pestic-Dragovich et al., 2000). This, 

together with the finding of nuclear actin, suggested that the two proteins may functions in 

a concerted manner, an idea strengthened by the fact that both proteins have been found in 

mammalian nucleoli (Andersen et al., 2005; Andersen et al., 2002; Fomproix and 

Percipalle, 2004). ChIP experiments showed that NMI and actin are associated to actively 

transcribing ribosomal genes (Philimonenko et al., 2004). Importantly, while actin is
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associated with both active and inactive RNAP-I, NMI binds to the enzyme containing 

transcriptional machinery through the TIF-IA (Philimonenko et al., 2004). This implies 

that actin and NMI are not recruited to the transcriptional machinery at the same time, 

suggesting that they may have specific roles in different steps of the RNAP-I dependent of 

transcription. However, in vivo inhibition of RNAP-I transcription by siRNA NMI protein 

depletion, as well as in vitro by NMI antibodies, clearly supports a role for NMI in RNAP- 

I transcription (Philimonenko et al., 2004). An intriguing question is whether NMI also 

plays a role in regulating other RNAPs, since the activity of all RNAPs seems to be 

inhibited by NMI blocking antibodies (Philimonenko et al., 2004). A recent publication 

showed that NMI is implicated in the formation of the initial phosphodiester bond by 

RNAP-II (Hofmann et al., 2006), supporting the idea of its possible involvement also in 

the regulation of RNAP-II activity.

1.10.3. Nuclear Myosin VI.

Myosin VI is a ubiquitously expressed non-conventional myosin (Buss et al., 2004) found 

in the Golgi complex, in membrane ruffles at the cell’s leading edge, in clathrin-coated 

vesicles and in a cytosolic pool (Buss et al., 2001; Buss et al., 1998). Within the myosin 

superfamily, Myosin VI motor properties are unique, since the direction of its movement is 

towards the pointed (minus) end of actin filaments, opposite to all other characterized 

myosins (Wells et al., 1999). Moreover at high load and low ATP concentrations Myosin 

VI stops moving along the actin filament and acts as an anchor, tethering tail-associated 

proteins to actin (Altman et al., 2004). In mouse and Human Myosin VI plays a role in 

different biological processes such as embryonic development and spermatogenesis
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(Friedman et al., 1999), while several mutations are associated with hereditary hearing loss 

and hypertrophic cardiomyopathy (Buss et al., 2004). In addition, Myosin VI regulates cell 

migration and its high expression levels correlate with the disseminating potential of tumor 

cells (Yoshida et al., 2004). Recently, new evidences show that Myosin VI is also present 

inside the nucleus of a number of cell lines, where it displays a speckled distribution and 

colocalizes with nascent transcripts and with RNAP-II (Vreugde et al., 2006). Moreover, 

ChIP experiments show that the molecule is recruited to promoters and intragenic regions 

of actively transcribed genes. Finally, the in vivo depletion of Myosin VI protein and the 

inhibition of transcription with antibodies against Myosin VI in in vitro assays show that it 

plays a role in RNAP-II gene transcription (Vreugde et al., 2006). Nevertheless there are 

no data on its mechanism of action. A reasonable idea would be that Myosin VI takes part 

in the process of elongation, since it is associated with intragenic regions of different 

analyzed genes (Vreugde et al., 2006).

1.11. Transcription factors confer target specificity to gene expression 

and define transcription programs.

The evolution of complex cellular and developmental processes depends on the 

maintenance and regulation of large amounts of genetic information. Animal cells 

normally transcribe thousand of genes and they evolved tightly regulated transcription 

programs in order to direct spatial and temporal patterns of gene expression in response to 

metabolic requirements. The need to discriminate between different genes requires 

specialized adapters that selectively target genes with the transcriptional apparatus. 

Transcription factors are the molecules dedicated to control and maintain this essential
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biological process. They are DNA-binding proteins that recognize specific sequences in the 

regulatory regions of the genes, such as promoters and/or the enhancers. Transcription 

factors have an activation domain (through which interact with RNA polymerase and other 

transcription factors) and a DNA-binding domain. The presence of different DNA binding 

motifs has led to a classification of transcription factor according to the structure of such 

motifs, the most common of which are:

a) Zinc-Finger motif, composed of amino-acids that bind a zinc ion (Zn2+) forming a 

protruding loop, like a finger. Several loops, repeated in tandem, denote a-helical 

structures that bind the major groove of DNA. Spl and the steroid nuclear receptors belong 

to this class of transcription factors.

b) Leucine-Zipper motif, in which leucine residues are repeated every seven amino acids 

to form an amphipathic a-helix, allowing the interaction with other leucine-zipper- 

containing factors to form homo and/or heterodimers. The Jun and Fos families of 

transcription factors belong to this class.

c) HLH motif is a 40-50 amino acid long sequence forming two amphipathic a-helices 

separated by a linker region (loop) of variable length, a-helices can bind to DNA and also 

dimerize with other factors. MyoD and Myc belong to this class.

d) Homeodomain motif, which shows a correlation with the HTH motif of prokaryotic 

repressors, and forms three a-helices. Several homeodomain (or homeobox)-containing 

transcription factors are involved in the development of most eukaryotes. Prepl, Pbx and 

Hox proteins belong to this class.

Regulation of gene expression is the result of the mixing and matching of different types of 

transcriptional activators and repressors in a coordinated fashion. Moreover, it is now
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evident that some transcription factors may also have time-, developmental- and tissue- 

restricted expression (Lemon and Tjian, 2000). This increases the finesse of tuning 

transcriptional regulation, considering the broad diversity of molecular signals that must be 

integrated by the transcriptional apparatus.

1.12. The transcription factor Prepl.

Prepl belongs to the MEINOX family of a homeodomain-containing transcription factors. 

Experimental data show that it heterodimerizes with Pbx family proteins in a DNA- 

independent manner, that such complexs are translocated to the nucleus where they bind 

DNA (through the homeodomains of Prepl and its Pbx partner) and act as transcriptional 

regulators (Berthelsen et al., 1999). Prepl is ubiquitously expressed in adult mouse tissues 

(although with great variability) and in embryos where it plays and important role during 

development (Berthelsen et al., 1998; Ferretti et al., 2006). Pbx is known to interact with 

Hox family proteins. Prepl forms trimeric complexes with Pbx Hox proteins and enhances 

their transcriptional activity. EMSA show that the trimeric complex Prepl-Pbx-Hox binds 

on the ARE of the HoxBl (bl-ARE) gene (Berthelsen et al., 1998), while transient 

transfections, using a bl-ARE-driven reporter plasmid, have shown a Prepl mediated up 

regulation of transcription (Berthelsen et al., 1998) in line with other in vivo findings 

(Ferretti et al., 2005; Ferretti et al., 2000; Jacobs et al., 1999; Ryoo et al., 1999). Besides its 

role in development and differentiation, the role of Prepl in apoptosis was also recently 

investigated. Prepl knock-down in zebrafish (by using a morpholino antisense 

oligonucleotides strategy) showed an associated massive apoptosis in the central nervous 

system during early development (Deflorian et al., 2004). Analogous experiments were



performed in our laboratory where, a Prepl hypomorphic (PrepF'O mouse model was 

developed (Ferretti et al., 2006). Embryos from Preplw mice express low (up to 10%) 

residual levels of Prepl mRNA and protein. Moreover Preplw embryos show several 

defects in angiogenesis, hematopoiesis and eyes development. The role of Prepl in 

apoptosis has been investigated using MEF obtained from WT and Prepl11 embryos at 

E14.5. The results show that PrepF MEF were spontaneously more prone to apoptosis and 

more sensitive to genotoxic stimuli. Very interestingly, the study found that Bcl-Xand p53 

genes were direct transcriptional targets of Prepl, indicating that Prepl controls the 

apoptotic response by directly regulating the expression of these genes (Micali et al., In 

preparation).

1.13. uPA and the plasminogen activation system.

Extra-cellular targeted proteolysis is essential for cell migration and tissue remodeling. 

One major system involved in these processes is the activation of plasminogen. The 

conversion of plasminogen to the active proteolitic form (plasmin) leads to the degradation 

of extracellular matrix molecules, like fibronectin and laminin, and this event is a crucial 

step in a number of biological processes, both in physiological (e.g. fibrinolysis, 

embryogenesis etc.) as well as in pathological conditions (e.g. tumor metastasis formation, 

angiogenesis etc.) (Crippa, 2007). Mammalian cells contain two types of Plasminogen 

Activators, the urokinase type (uPA) and the tissue type (tPA), of which uPA is primary 

involved in extracellular matrix degradation (Andreasen et al., 1997; Dan0 et al., 1999).
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1.13.1. uPA expression and cancer.

Increased expression of uPA has been reported in various malignancies, including prostate 

(Gaylis et al., 1989; Van Veldhuizen et al., 1996), breast (Look and Foekens, 1999), colon 

(Pyke et al., 1991) and lung (Skriver et al., 1984) cancers. These represent the most 

common type of malignancies in many Western industrialized countries and have a high 

level of incidence. In many cases, its increased expression seems to be associated with an 

increased metastatic potential and poor survival (Hsu et al., 1995; Miyake et al., 1999a; 

Miyake et al., 1999b; Yang et al., 2000). To be able to invade surrounding tissues and to 

metastasize, cancer cells must degrade the extra cellular matrix components, a process in 

which uPA plays a major role.

1.13.2. Transcriptional regulation of the uPA gene.

Transcription of the uPA gene is modulated by a number of chemical and physical stimuli 

(Besser et al., 1996; Cirillo et al., 1999). Such stimuli have been shown to act (at least in 

part) through the enhancer element, located approximately 2 kb from the start of 

transcription (Verde et al., 1988) (Figure 1.14). However, recent findings in our laboratory 

showed that a GC-/GA-rich region, associated with the proximal promoter (Figure 1.14), 

plays an important role in the transcriptional regulation of uPA through the binding of Spl 

and that such binding may occurs when the transcription factor is phosphorylated through 

the JNK pathway (Benasciutti et al., 2004; Ibanez-Tallon et al., 2002; Milanini et al., 1998; 

Milanini-Mongiat et al., 2002).
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Figure 1.14. Scheme of uPA gene.
The scheme reports the locations of the enhancer and minimal promoter of uPA gene. The 
enhancer contains two AP-1 binding sites and the minimal promoter five Spl binding sites, 
referred to in the text, as GC-/CA-rich region.

1.13.3. Phorbol esters induce uPA in HepG2 cells.

TPA is a potent stimulator of cell migration, cell scattering and a general enhancement of 

the metabolic activity levels in many cultured cell lines. TPA activates the phospholipid 

dependent PKC pathway (Cirillo et al., 1999), determining the upregulation of Jun and Fos 

protein family members which, in turn, lead to the targeted activation of AP-1 regulatory 

elements. The induction of uPA transcription by TPA has been well established by a 

number of studies (Cirillo et al., 1999; Ibanez-Tallon et al., 1999) and this regulation
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targets the enhancer of uPA, containing two API binding sites (Rorth et al., 1990). 

Previous results in HepG2 cells, where the uPA gene is not expressed in basal conditions, 

showed that TPA treatment for 1-3 hours induces uPA transcription (Ibanez-Tallon et al., 

1999). Transcriptional activation is accompanied by an increase of the DNasel 

hypersensitivity and accessibility of the regulatory region to restriction nucleases (Ibanez- 

Tallon et al., 1999). However, the presence of a modest DNasel hypersensitivity and 

restriction enzyme accessibility also before induction suggests a limited, if any, chromatin 

remodeling event following TPA treatment (Ibanez-Tallon et al., 1999). This led to 

speculate that the gene might be in a poised state and that other changes in terms of 

regulation of the uPA gene contribute to its transcriptional induction.
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AIM OF THE WORK

The aim of my thesis was to study the interaction between the enhancer and the minimal 

promoter of the uPA gene through the looping of the IVS in PC3 cells where the gene is 

constitutively expressed. In order to address this issue I set up a technical approach in 

which MNase digestion of the cross-linked chromatin was coupled to ChlP. This allowed 

me to precisely map the interacting DNA sequences and characterize their proteins content. 

In order to gain insights on the dynamics of such interaction I applied this approach to 

another cell system (HepG2 cells), where uPA gene transcription can be induced by the 

treatment with phorbol esters. The finding that in uninduced HepG2 cells the uPA gene is 

associated with a poised RNAP-II form, prompted me to ask if the transcriptionally 

inactive gene was hosted by distinct nuclear sub-structures similar to, but distinct from, 

transcription factories, known to be active sites of transcription. Sites of nascent RNA 

synthesis are associated with non-conventional Myosin VI. This observation led to 

experiments aimed at clarifying its implication in transcription and to elucidate its effects 

on the activity of RNAP-II. Finally I studied the mechanism of Myosin VI recruitment on 

specific target genes through the interaction with the transcription factor Prepl. In 

summary this thesis provides some new clues on the three-dimensional organization of cis- 

regulatory regions and how it affects transcriptional regulation. Moreover, it gives a new 

outlook on the link between transcription and nuclear compartmentalization, supporting the 

importance of nuclear architecture and structural proteins in regulating gene expression.
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MATERIAL AND METHODS

2.1. Cells culture and treatments.

PC3, HepG2, NT2-D1 and MEF cells were grown at 37 °C under a 5% C 02 atmosphere in 

DMEM (Gibco), containing 10% (v/v) FBS (Gibco), 0.2 mg/ml streptomycin (Gibco), 20 

U/ml penicillin (Gibco,), 2mM glutamine (Gibco) and ImM sodium pyruvate (Gibco).

2.1.1. Treatment of PC3 cells with a-amanitin.

a-amanitin (Sigma) was dissolved in water and were added to the culture medium to the 

final concentration of lOmg/ml for 24 hours, as prevously described (Casse et al., 1999). In 

ChIP experiments on PC3 cells (Figures 3.10 B,C and 3.13 C) the concentration of a- 

amanitin was 10 p,g/ml for 24 hours.

2.1.2. Treatment of the HepG2 cells with TP A.

Treatment of HepG2 cells with TPA (Sigma) was performed on starved cells (0.5% (v/v) 

FBS for two hours) by adding new medium containing lOOng/ml TPA and 10% (v/v) of 

FBS for 15 minutes to three hours.

2.1.3. Treatment of the NT2-D1 cells with RA and TSA.

Treatment of NT2-D1 cells with RA (Gibco) was performed by adding RA directly to the 

medium at a final concentration of 3/^g/ml and incubating cells for 48 hours.
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Treatment of NT2-D1 cells with RA + TSA was performed by adding RA directly to the 

medium to a final concentration of 3/<g/ml and after incubating cells for 42 hours adding 

TSA directly to the medium to a final concentration of 10 ng/ml and incubating for 6 hours 

more.

2.2. RNA detection.

2.2.1. RNA extraction and reverse transcription.

Total RNA was extracted with an RNeasy mini kit (Qiagen), quantitated by 

spectrophotometry (Nanodrop). 5 pg of total RNA were reverse-transcribed using a 

Superscript™ First-Strand kit using random primers (Invitrogen) according to the 

manufacturer's instructions.

2.2.2. RNA quantization by real-time PCR.

For qRT-PCR, 5 ng of reverse-transcribed RNA were amplified and the amplification 

products detected using the TaqMan gene expression assay (Hs00170182_ml, 

Hs00181192_ml, Hs00158272_ml, and Hs00355782_ml, Applied Biosystems, Foster 

City,CA94404 USA) primers and probes specific for uPA, LDLR, ITGB4BP, and 

CDKN1A, in an ABI PRISM 7900HT Sequence Detection System. 18S rRNA levels were 

used to normalize the results (TaqMan gene expression assay 4319413E). Target gene 

expression was normalized to the values obtained with the pIRES-EGFP vector
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2.2.3. RNA detection by non-quantitative PCR.

To check for the presence of RNA in the enhancer and coding region of the uPA gene 

(Figure 3.12) total RNA was extracted from untreated cells, reverse transcribed as above 

and 5, 10 and 20 ng of reverse transcribed products were amplified with primers 

corresponding to different fragments of the enhancer and coding region of uPA. PCR 

reactions were performed as follows: First denaturation 1: 95° C for 3 minutes; second 

denaturation: 95° C, 1 minute; annealing step (see Table 1 for temperatures of the primer 

sets), 1 minute; extension: 72° C, 1 minute; final extension: 72° C, 3 minutes. The second 

denaturation, annealing and extension steps were repeated for 40 cycles. Primer sequences, 

location with respect to the uPA sequence (Verde et al., 1988) and annealing temperatures 

used for each primer set are reported in Table 1. PCR products were analyzed on 2% 

agarose gels in IX TAE buffer.

2.3. Cells cross-linking and chromatin preparation.

Cells were cross-linked with 1% formaldehyde (Sigma) for 10 minutes and chromatin 

prepared essentially as described in (Orlando et al., 1997) by using 10 sonication cycles 

(35 seconds at 60-70 Watt, in an Ultrasonic Processor XL Sonicator (Miosonix), followed 

by a 2 minutes rest on ice). Cross-linked chromatin-containing fractions were pooled and 

stored at -80° C.

47



2.4. Restriction enzyme digestion of cross-linked chromatin.

Cross-linked chromatin fractions were first dialyzed against TE buffer (10 mM EDTA, 50 

mM Tris-HCl, pH 8) and then diluted 1:10 in water. 10 pg of dyalized chromatin samples 

were digested with 100 U of the restriction enzymes Msel and Dral (Roche) overnight at 

37°C. Following digestion, the material was treated with RNase A (50 /*g/ml) for 30 

minutes at 37° C and by proteinase K (500 }ig/m\) in 0.5% (w/v) SDS at the same 

temperature overnight. Formaldehyde cross-links were reverted by heating the samples at 

65° C for 5 hours and the DNA was purified by phenol extraction. For the experiments 

shown in Figure 3.2 the DNA was resuspended in distilled water, quantitated at the 

spectrophotometer (Nanodrop) (ODA260) and equal amounts (100 ng or 10 ng) of material 

for each time point were used as template in PCR reactions.

2.5. Micrococcal nuclease digestion of cross-linked chromatin.

Cross-linked chromatin fractions were first dialyzed against 25mM KC1, 50 mM Tris-HCl, 

pH 8 and then diluted with dialysis buffer to a concentration of 200 jig/m\. MNase 

digestions were performed in bulk by adding CaCl2 to a final concentration of 2mM and 

2U/ml MNase (Sigma) and incubating at 37°C. Aliquots (1 ml) were withdrawn from the 

digestion mixture at each time point and directely added to the digestion stop solution (1% 

SDS; 0.1 M NaCl; 10 mM EDTA; 10 mM EGTA; 50 mM Tris-HCl pH 8). Digested 

chromatin was treated with proteinase K (Roche) (500 fig/ml) for 5 hours at 37°C, cross­

links were reverted by heating overnight at 65°C and the DNA was purified using phenol 

extraction and resuspended in distilled water. The DNA was then treated with RNAse A
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(Roche; 50 //g/ml) for 30 minutes at 37°C, again with proteinase K (500 //g/ml) for 5 hours 

at 55°C, phenol extracted, precipitated and resuspended in distilled water. For the 

experiments shown in Figures 3.3, 3.4, 3.6, 3.7, 3.8, 3.10 DNA quantitated at the 

spectrophotometer (Nanodrop) (ODA260) and equal amounts (100 ng) of material for each 

time point were used as template in PCR reactions.

For ChIP assays, cross-linked material was digested for 50 minutes at 37°C and MNase 

digestion stopped by adding RIPA buffer (1 mM EDTA; 0.5 mM EGTA; 10 mM Tris; pH 

8; 1% Triton; 0.1% (w/v) Na Deoxycholate; 0.1% (w/v) SDS; 140 mM NaCl ; 1 mM 

PMSF). The resulting material was used directly in ChIP assays.

2.6. ChIP.

This protocol was used both for MNase-digested and undigested cross-linked chromatin. 

Each aliquot of cross-linked chromatin (200 pg) was precleared with 25 ]A of rProtein A- 

Sepharose beads (Amersham Pharmacia Biotech), previously coated with 10 //g/ml each of 

poly-(dl-dC), poly-(dG-dC) and poly-(dA-dT) (Sigma) and with 100 //g/ml of bovine 

serum albumin (BSA; Roche) in RIPA buffer. The aliquots were then incubated overnight 

with 1 //g of the appropriate antibodies (or without antibodies for the mock controls) in a 

total volume of 1 ml of RIPA buffer and immunoprecipitated as described (Orlando et al., 

1997). Following immunoprecipitation, the material was treated with RNase A (50 //g/ml) 

for 30 minutes at 37° C and by proteinase K (500 //g/ml) in 0.5% (w/v) SDS at the same 

temperature overnight. Formaldehyde cross-links were reverted by heating the samples at
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65° C for 5 hours, the DNA was purified with phenol extraction and resuspended in 250 \i\ 

of distilled water. Resuspended material (4 jA) was used as a template in PCR reactions.

2.6.1. non-quantitative PCRs of immuno precipitated DNA.

Semi-quantitative PCRs were performed as follows: First denaturation step: 95° C for 3 

minutes; second denaturation step: 95° C, 1 minute; annealing step (see Table 1 for 

temperatures of the primer sets), 1 minute; extension step: 72° C, 1 minute; final extension 

step: 72° C, 3 minutes. The second denaturation, annealing and extension steps were 

normally repeated for 33 cycles. To exclude the presence of a signal from other 

immunoprecipitated material, the number of cycles in the PCR reactions was raised to 40. 

Primer sequences, location with respect to the uPA sequence (Verde et al., 1988) and 

annealing temperatures for each primer set are reported in Table 1. For the amplification of 

the 1,574 bp genomic fragment shown in Figures 3.1 and 3.2 (primers F14/R26) an 

elongation step of 2 minutes was used.

PCR products were analysed on 2% (w/v) agarose gels in IX TAE buffer.

2.6.2. Quantitative PCRs of immunoprecipitated DNA.

ChlP-enriched DNA of indicated amplicons (see Table II) was quantified by QT-PCR in a 

light cycler instrument (Roche) using FastStart DNA mix SYBR Green I kit (Roche). PCR 

conditions were as follows: First denaturation and DNA polymerase activation step: 95° C 

for 10 minutes; second denaturation step: 95° C, 15 seconds; annealing step (see Table II 

for temperatures of the primer sets), 6 seconds; extension step: 72° C, 20 seconds. Three 

independent ChIP experiments were performed and ChlP-samples were analysed in
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triplicate PCRs. The relative enrichment of genomic DNA was determined by calculating 

the ratio of DNA in the immunoprecipitates compared with DNA in the input chromatin.
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TABLE I -  List of the primer sets used.

Primer

sets

Primers Sequences 

(5’ to 3’ orientation)

Primers position 

in uPA sequence

PCR annealing 

temperature for 

primer sets

F8

R ll

TGTCCAGGAGGAAATGAAGTCATC

GAAACTCCCAGGTTAGTTATCAGG

-1981/-1958 

-1836/-1859

57°C

F8

R12

TGTCCAGGAGGAAATGAAGTCATC

GACCAGAACATAAACAGAGATGCTG

-1981/-1958 

-1792/-1816

57°C

F8

R14

TGTCCAGGAGGAAATGAAGTCATC

CTCTAGAAGACTGTGGTCAGTTTTG

-1981/-1958

-1731/-1755

57°C

F5

R14

GATTAGCGCATGGATAAGGAAGTTC

CTCTAGAAGACTGTGGTCAGTTTTG

-2105/-2081 

-1731/-1755

54°C

F22

R26

CAGTAATCTGGCCTTGCCTTTCC

GAGGAATCGAGAGGCTTGTAAATTC

-645/-623

-181/-205

60°C

F26

R31

GAATTTACAAGCCTCTCGATTCCTC

GGGATCTCAGGACCGCGG

-205/-181

+114/+97

60°C

F22

R31

CAGTAATCTGGCCTTGCCTTTCC

GGGATCTCAGGACCGCGG

-645/-623

+114/+97

60°C

F21

R26

CCCAATCCTTATCAAGCCCTGTC

GAGGAATCGAGAGGCTTGTAAATTC

-700/-678

-181/-205

60°C

F22

R27

CAGTAATCTGGCCTTGCCTTTCC

CGCAACGCTCACAAAGATTTG

-645/-623

-114/-134

60°C

F26

R34

GAATTTACAAGCCTCTCGATTCCTC

ACCAGGCTCCCCAGCTGTC

-205/-181

+304/+286

60°C

F26

R36

GAATTTACAAGCCTCTCGATTCCTC

GAGGTCGGGGCGCTAGACG

-205/-181

+420/+402

60°C

F26

R37

GAATTTACAAGCCTCTCGATTCCTC

CAGGACGCAGAGAAGCAGG

-205/-181

+465/+447

60°C

F25

R31

GAGCTGGGCGAGGTAGAGAGTC

GGGATCTCAGGACCGCGG

-313/-292

+114/+97

60°C
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F7

RIO

GGGAGAAAGGGTGTCACGC

GCCGTCATGATTCATGTTGCTCC

-2024/-2006

-1872/-1894

57° C

F3

R6

GAGGACCCCTTGAACCCAGAAG

CCGTGCCACCTCTTCACCTAGC

-2192/-2171

-2043/-2064

57°C

F ll

R15

CCTGATAACTAACCTGGGAGTTTC

CTTCAGAGCCAACCTTGCTACTTC

-1859/-1836 

-1707/-1730

57°C

F18

R21

GAGTCCTACTGGGTTCAAAATGAC

GACAGGGCTTGATAAGGATTGGG

-1354/-1331

-726/-748

57°C

F6

RIO

GCTAGGTGAAGAGGTGGCACGG

GCCGTCATGATTCATGTTGCTCC

-2064/-2043

-1872/-1894

54°C

F 9 

R12

GCATGACAGCCTCCAGCCAAG

GACCAGAACATAAACAGAGATGCTG

-1942/-1922 

-1816/-1792

57°C

F19

R22

CTCCAGTCTCCCAATTCCTCTAC

GGAAAGGCAAGGCCAGATTACTG

-948/-926

-623/-645

54° C

F7

R ll

GGGAGAAAGGGTGTCACGC

GAAACTCCCAGGTTAGTTATCAGG

-2024/-2006 

-1836/-1859

54° C

F14

R26

CAAAACTGACCACAGTCTTCTAGAG

GAGGAATCGAGAGGCTTGTAAATTC

-1755/-1731

-181/-205

60°C

F27

R31

CAAATCTTTGTGAGCGTTGCG

GGGATCTCAGGACCGCGG

-134/-114

+114/+97

57°C

F32

R36

GGGATCTCAGGACCGCGG

GAGGTCGGGGCGCTAGACG

+194/+213

+420/+402

57°C

F18

R22

GAGTCCTACTGGGTTCAAAATGAC

GGAAAGGCAAGGCCAGATTACTG

-1354/-1331

-623/-64S

57° C

F29

R31

GCTGCAAGACAGGGGAGGGAG

GGGATCTCAGGACCGCGG

-85/-65

+114/+97

60°C

TABLE II -  List of the primer sets used in ChIP quantitative PCR’s.

PCR annealing

Primer sets Primers Sequences of promoter regions temperature for

Used in HepG2 cells primer sets

(5’ to 3 ’ orientation)
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Fw- p21WAFl 

Rev-p21WAFl

CTGGAACTCGGCCAGGCTCAGC

GCGAATCCGCGCCCAGCTCCG

60°C*

Fw-uPA

Rev-uPA

CAAATCTTTGTGAGCGTTGCG

GGGATCTCAGGACCGCGG

60°C *

Fw-p27/eIF6

Rev-p27/eIF6

CCTAAAAAGCTCCTGAATG

GCACACTTGGACAGGATG

57°C

Fw-LDLR

Rev-LDLR

TGTTAACAGTTAAACATCGAGAA

CCCGCGATTGCACTCGGGGC

60°C

Primer sets Primers Sequences of exonic regions 

(5’ to 3’ orientation)

PCR annealing 

temperature for 

primer sets

Fw- p21WAFlInt. 

Rev-p21WAFlInt

CTGTCACTGTCTTGTACCCTTGTGCC

GTTAGCTAGTGGTCTTTGCTGCCTAC

60°C *

Fw-uPAInt.

Rev-uPAInt

CGACTATCTCTATCCGGAGC

ACACTCACCTGGCAGGAATC

58°C *

Fw-p27/eIF6Int.

Rev-p27/eIF6Int

ATCCCGCATGCTGGTGGCAATGGT

TGGGTCATTACCTGCCACAGTTTGG

60°C

Fw-LDLRInt.

Rev-LDLRInt

ATCTCCTCAGTGGCCGCCTCTACTG

CAGTTTTCTGCGTTCATCTTGGCTTGA

60°C

Primer sets Primers Sequences used in MEF cells 

(5’ to 3’ orientation)

PCR annealing 

temperature for 

primer sets

Fw- p53 

Rev- p53

GGTGGTGCGATACCAAGTATCTCG

GTAAGTGGACCGCCACTGTTCTG

60°C

Fw- Bcl-XL 

Rev- Bcl-XL

CGGACTCAGACCTTCATAAGAGCC

CCAAAACACCTGCTCACTTACTGG

60°C

* PCR mix contained 1.2M (final concentration) of betaine PCR reagent (Sigma, Cat. No. 

B0300).
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2.7. BrUTP incorporation assay.

Cells grown on glass coverslips for 24-36 hours (less than 60% confluent) were washed 

once with ice-cold PBS, equilibrated in transcription buffer (TB; 100 mM KC1, 5 mM 

MgCl2, 0.5 mM EGTA, 1 mM PMSF, 5 U/ml RNAsin (Promega Co., Madison, WI), 25% 

glycerol and 50 mM Tris-Cl, pH 7.4) for 10 minutes on ice and permeabilised with 0.05% 

Triton X-100 in TB for 3 minutes on ice. Samples were then incubated for 20 minutes at 

room temperature in TBN (TBN: TB containing 0.5 mM ATP, 0.5 mM GTP, 0.5 mM CTP 

(Promega) and 0.25 mM BrUTP) (Sigma), washed in PBS, fixed in 3% paraformaldehyde 

in PBS for 10 minutes at room temperature. Incorporated BrUTP was detected by 

immunofluorescence with anti-BrdU monoclonal antibodies from Roche using confocal 

microscopy analysis (See below).

2.8. Immunofluorescence and confocal microscopy analysis.

Cells were grown at least for 24-36 hours on 13 mm glass coverslips (VWR international). 

Cells where washed three times with cold PBS, fixed with paraformaldehyde solution (3% 

(w/v) paraformaldehyde; 2% (w/v) sucrose; IX PBS) for 10 minutes, at room temperature 

(RT) and then washed again three times with cold PBS. Cells where then permeabilized by 

incubation in Hepes-Triton solution (20mM Hepes pH7.4; 300mM Sucrose; 50nM NaCl; 

3mM MgCl2; 0,5% (v/v) Triton X-100) for 5 minutes at RT washed three times with IX 

PBS + 0,2% (w/v) BSA and after incubation for 20 minutes at 37°C in IX PBS + 2% (w/v) 

BSA were added the primary Ab (1:100 final dilution) and incubated 30 minutes at 37°C. 

After three washes with IX PBS + 0,2% (w/v) BSA, IX PBS + 2% (w/v) BSA were added 

and cells incubated for 20 minutes at 37°C before adding the secondary antibody (1:100
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final dilution) and incubated for 30 minutes at 37°C. Cells were washed again three times 

with IX PBS + 0,2% (w/v) BSA and then incubated with 4’6-diamidino-2-phenylindole 

dihydrochloride (DAPI) nuclear staining (Fluka) previously resuspended in IX PBS. After 

an incubation of 3 minutes at RT cells were washed twice with cold PBS and cover slips 

were mounted with Immu-Mount (Thermo electron corporation). Images were obtained 

with a Leica DMIRE2 (Confocal System Leica TCS SP2) and a Delta vision (Delta Vision 

RT deconvolution System) confocal microscopes.

2.9. Protein extraction and western blot analysis.

2.9.1. Total protein extraction.

Cells were detached with cold PBS additioned with ImM EDTA and washed with cold 

PBS. lx l0 6 cells were resuspended in lysis buffer (Tris pH 7.6, 50 mM; NaCl, 0.8 M; 

EDTA, 1 mM; Triton X-100, 1%; NP-40, 0.5%; PMSF, ImM; phosphatase inhibitor 

cocktail 1, 1:100; phosphatase inhibitor cocktail 2, 1:100; Protease inhibitors, 1:1000) 

(phospatase inhibitor cocktails 1 and 2 were from Sigma; protease inhibitors were from 

Roche) and lysed by passing them trough a syringe. Lysates were kept in agitation for 15 

minutes at 4 °C, additioned with an equal volume of 2X SDS gel-loading buffer and heated 

for 10 minutes at 95 °C and chilled on ice for 2 minutes. Equal volumes were loaded in a

5-15% gradient SDS-PAGE (Laemmli, 1970).
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2.9.2. Cytoplasmic and Nuclear protein extraction.

Cells were detached with cold PBS containing ImM EDTA and washed with cold PBS. 

lx l06 cells were added of buffer A (Hepes-KOH pH 7.8 10 mM; MgCl2 1.5 mM; KC1 10 

mM; phosphatase inhibitor cocktail 1, 1:100; phosphatase inhibitor cocktail 2, 1:100; 

Protease inhibitors, 1:1000) and gently pipetted and then incubated on ice for 10 minutes. 

10% Triton X-100 (Sigma) was added to the cells in buffer A as 1/30 of the volume and 

the suspension vortexed for 30 seconds. An aliquot of treated sample was observed under 

the microscope (CK2 Olimpus) to control that cytoplasmic membranes were broken and 

nuclei released. Samples were centrifuged for 1 minute at 11,000 rpm in an Eppendorf 

microfuge at 4°C to pellet nuclei. The supernatant, representing the cytoplasmic fraction, 

was additioned with an equal volume of 2X SDS gel-loading buffer and heated for 10 

minutes at 95 °C. Equal volumes for each sample were loaded in a 5-15% gradient SDS- 

PAGE (Laemmli, 1970). The pelleted fraction (representing the whole nuclei) was washed 

twice with buffer A to eliminate cytoplasmic protein contaminants, additioned with an 

equal volume of 2X SDS gel-loading buffer, heated for 10 minutes at 95 °C and equal 

volumes were loaded in a 5-15% gradient SDS-PAGE (Laemmli, 1970).

2.9.3. Detection of proteins.

Following SDS-PAGE proteins were transferred to nitrocellulose as previously described 

(Towbin et al., 1979). Filters were blocked for 16 hr at 4°C with PBS IX supplemented 

with 5% non-fat dry milk (Regilat), washed 5 times for 5 minutes with PBS IX 

supplemented with 0.1% Tween 20 (PBS-T) and incubated with primary antibodies (see 

Table III) at RT. After 1 hour blots were washed twice for 10 minutes with PBS-T,
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incubated for 30 minutes at RT with a peroxydase-conjugated secondary anti-mouse 

(Amersham, Cat. No. NA9310V) or anti-rabbit (Amersham, Cat. No. NA9340V) or anti­

goat antibody (depending on the primary antibody used, see Table III) used at final 

concentration of 1:5000, washed 5 times for 10 minutes with PBS-T and finally developed 

with Super Signal West pico chemiluminescence substrate system (Pierce, Cat. No. 

34080).

2.10. Southern Blotting.

2.10.1. Gel fractionation of genomic DNA and transfer on a nylon membrane.

Cross-linked chromatin has been prepared, digested with MNase and genomic DNA 

purified and quantitated as described before (see above). 15 pg of genomic DNA for each 

time point of MNase digestion were fractionated on a 0.8% (w/v) agarose, IX TAE gel 

overnight. The gel was incubated for 30 minutes in an acid solution (0.25 M HC1), rinsed 

with water, incubated twice in a basic solution (0.6 M NaCl, 0.2 N NaOH) for 15 minutes 

and finally incubated 15 minutes in a neutralizing solution (0.5 M Tris pH 7.5, 1.5 M 

NaCl). DNA was transfered overnight in 20X SSC by capillarity on Hybond N+ nylon 

transfer membrane (Amersham pharmacia biotech). The membrane was previously floated 

in water and than soaked in SSC 20X. The following day after, the membrane was soaked 

in SSC 2X and gently rubbed with a gloved finger to remove all agarose, incubated 30 

seconds in a basic solution (0.4 N NaOH), transferred for 5 minutes in a equilibrating
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solution (0.2 M Tris pH 7.5; SSC 2X), air dried and than DNA on the membrane fixed 

using UV cross-linker (Stratalinker,).

2.10.2. Probes preparation.

Probes specific for the enhancer and MP were obtained by PCR using primer sets F5/R14 

and F22/R26 (see Table I) and the following PCR conditions:

First denaturation 1: 95° C for 3 minutes; second denaturation: 95° C, 1 minute; annealing 

step (see Table 1 for temperatures of the primer sets), 1 minute; extension: 72° C, 1 minute; 

final extension: 72° C, 3 minutes. The second denaturation, annealing and extension steps 

were normally with 40 amplification cycles. Specific amplified fragments were isolated by 

agarose gel extraction using Wizard SV Gel and PCR clean-up system (Promega), 

quantitated by the spectrophotometer (Nanodrop) (ODA260) and radiolabeled using 32P-a- 

dCTP (Amersham, Cat. No. AA0005) with Rediprime ™ II random prime labelling system 

(Amersham, Cat. No. RPN1633) according to the manufacture’s instructions.

2.10.3. Hybridization and signal detection.

The membrane was prehybridized at 65°C shaking for 6 hours in hybridization buffer (1% 

SDS (w/v); 10X Denharts; 0.2% BSA (w/v); 1 M NaCl; 100 p,g/ml herring sperm) using a 

Kapak scotchpak heat sealable pouch (Kapak corporation, Cat. No. 403). The hybridization 

buffer was then replaced, radiolabeled probes (previously denatured) were added and the 

membrane incubated at 65°C overnight with shaking. The following day the membrane 

was washed twice with wash solution A (2XSSC; 0.1% SDS (w/v)) at RT for 10 minutes, 

once with wash solution B (1XSSC; 0.1% SDS (w/v)) at 65°C for 15 minutes and once
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with wash solution C (0.1XSSC; 0.1% SDS (w/v)) at 65°C for 10 minutes. Radioactive 

membranes were exposed for the appropriate time for autoradiography and revealed using 

Typhoon 8600 phosphoimager (Molecular Dynamics) and signal intensity was measured 

using a using the inbuilt software.

TABLE III -  List of the Antibodyes used.

Name of the 

antibody Company and Cat. No.

Final

concentration 

in ChIP

Final

concentration 

in W.B.

Anti Phospho-Ser-2 

of RNAP II CTD (a- 

CTD-P-S2)

Covance, MMS-129-RA lpg/ml 1:500

Anti Phospho-Ser-5 

of RNAP II CTD (a- 

CTD-P-S5)

Co vance, MMS-134-RA lpg/ml 1:500

a-Myosin VI 

(KA-15) Sigma, M5187-.2 ML lpg/ml 1:1000

a-Histone

H3-K4me2 Upstate, 07-030 lpg/ml #

a-Histone

H3-K9me2 Upstate, 07-212 lpg/ml #

a-Histone

H3-K14ac Upstate, 07-353 lpg/ml #

a-Histone

H3-K9ac Upstate, 07-352 lpg/ml #

a-Histone H2B Upstate, 07-371 # 1:2000

a-c-Jun Santa Cruz, sc-1694X lpg/ml 1:1000

a-p300 (N-15) X Santa Cruz, SC-584X lpg/ml #
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a-Spl (PEP2) X Santa Cruz, sc-59X lpg/ml #

a-Lamin A/C 

(N-18) Santa Cruz, sc-6215 # 1:1000

a-Lamin A/C (636) Santa Cruz, sc-7292 # #

a-RNAP II (N20) Santa Cruz, sc-899 lpg/ml 1:800

a-BrU Roche, Cat. No. 11170376001 #

a-HMGNl Kindly provided by Dr. 

Michael Bustin, NCI, 

Bethesda

lpg/ml

a-HMGN2 Kindly provided by Dr. 

Michael Bustin, NCI, 

Bethesda

lpg/ml

a-uPAR Produced in our laboratory lpg/ml

2.11. Transient transfections.

Transient transfections were performed using lipofectamin 2000 (Invitrogen, Life 

Technologies) according to manufacturer's instructions. For the experiment shown in 

Figure 5.4 the transfection of HepG2 cells was performed in 24 well plates using at a total 

of 0,8 pig of DNA/well (either the control pEGFP-Cl empty vector (Clontech) or the full 

length pEGFP-MyosinVI (Aschenbrenner et al., 2003), (kindly provided by Dr. T. Hasson) 

containing 5-7 X 104 cells on glass coverslips. For the experiment shown in Figure 6.3 the 

transfection on NT2-D1 cells was performed in 6 well plates. 6 pig of DNA per well of 

either control pIRES-EGFP empty vector or pIRES-EGFP-MyosinVI AS (Yoshida et al., 

2004) (kindly provided by Dr. H. Naora) with 106 cells/well were used.
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2.11.1. Selection of stably transfected cells.

To establish stable clones expressing the myosin VI antisense RNA transfections on 

HepG2 cells were done as described above and cells were routinely passed in complete, 

selective medium (see above), containing 0.9 mg/ml G418 (neomycin; Gibco).

2.12. Tandem Affinity Purification (TAP) of Prep-l-associated proteins.

Prepl-TAP cDNA and purification are described elsewhere (Diaz et al., in preparation).

2.13. Mouse embryo primary fibroblasts preparation.

Prep 11/1 and WT primary mouse embryo fibroblasts (MEFs) were obtained from embryos 

14.5 days after fertilization. Mice were sacrificed by carbon monoxide inhalation. Each 

embryo was dissected and treated with 0.25% trypsin, 0.02% EDTA in PBS for 30 minutes 

on ice in 24 wells-plates. Trypsinization was blocked by the addition of complete-DMEM. 

After mechanical dissociation, embryo fragments were cultured in 6 cm dishes containing 

complete-DMEM, and were maintained at 37° C, in a humidified incubator with 5% C02. 

Genotyping was performed as described in (Ferretti et al., 2006).

2.13.1. Amplification and maintenance of cultured MEF.

MEF were incubated until confluent and split every 2-3 days in 15 cm dishes with 20 ml of 

DMEM and mantained at 37 °C, in a humidified incubator with 5% C02. MEF were used 

for experiments between passages 4 and 5.
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2.14. Cell fixation for cryo-section (Protocollo Ana).

Cell fixation are described in (Branco and Pombo, 2006).

2.14.1. Cryo-section and Immuno-FISH analysis.

Cryosections and immuno-FISH analysis are described in (Branco and Pombo, 2006).
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RESULTS AND DISCUSSION -I-

Interaction between enhancer and MP of the uPA 

gene by looping of the intervening sequence. 

RESULTS -I-

3.1.1. Anti-Spl and anti-p300 antibodies immunoprecipitate uPA MP and 

enhancer sequences.

Formaldehyde cross-links molecules with reactive groups at a maximum distance of 2 A. 

This may occur between proteins bound to distant regulatory elements if such groups are 

close enough, implying their interaction. We tested this hypothesis for the MP and the 

enhancer of the uPA gene, located 2 kb upstream, by performing conventional ChIP 

experiments on cross-linked, sonicated chromatin from PC3 cells with antibodies against 

Spl, which uniquely binds the MP (Cirillo et al., 1999; Ibanez-Tallon et al., 2002; Nerlov 

et al., 1992; Nerlov et al., 1991), and the cofactor p300. We asked if the DNA 

immunoprecipitated with one or the other antibody contained both enhancer and MP
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sequences, by amplifying the recovered material with specific primers (F5/R14 and 

F27/R31 in Figure 3.1 A). Indeed both genomic DNA sequences were immunoprecipitated 

with either antibody, whereas the IVS was not detected (Figure 3.IB) even by increasing 

the number of PCR cycles. Thus, the results are consistent with a close physical proximity 

of the regulatory elements and the extrusion of the IVS. However, amplification of the 

input DNA with the F14/R26 primer set did show the presence of a PCR product (Figure 

3.IB), indicating that the IVS was not fully broken by sonication. To make sure that the 

regulatory elements were located on separate genomic fragments in the 

immunoprecipitated material we decided to enzymatically cleave ChIP ready chromatin 

prior to immunoprecipitation.

3 74  bp  

F5 R14

F14

249  bp  

F27 R31

M P \L

R26

1 ,5 7 4  bp

B

Proximal
promoter

Enhancer

Intervening
sequence

Figure 3.1. Both uPA enhancer and MP sequences are present in genomic DNA 
immunoprecipitated with either anti-Spl or anti-p300 antibodies.
ChlP-ready chromatin was immunoprecipitated with anti-Spl and anti-p300 polyclonal 
antibodies. Purified DNA was amplified by PCR with the F5/R14, F27/R31 and F14/R26 
primer sets (Table I). The PCR products were fractionated on a 2% agarose 0.5x TBE gels
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and stained with EtBr. (A) Scheme of the regulatory region of the uPA gene (E = enhancer; 
MP = minimal promoter) and location of the primer sets (not drawn to scale). The 
regulatory elements are located approximately 2 kb apart. Arrows with full heads: primers 
and their orientation; empty arrowhead: transcription start site. Empty boxes: amplified 
fragments. (B) PCR amplification products of immunoprecipitated genomic DNA. Both 
enhancer and MP sequences, but not the intervening sequence, are present in the material 
recovered after immunoprecipitation with anti-Spl or anti-p300 antibodies.

3.1.2. Restriction enzyme digestion, following sonication, does not fully 

cleave the IVS.

We tried to digest ChlP-ready chromatin with restriction enzymes. We chose 4- (Mse I) or

6-cutter (Dra I) enzymes because they have multiple recognition sites (6 for Mse I and 2 

for Dra I) in the region between the 3’ end of the enhancer (-1,879) and the 5’ end of the 

MP (-86), but not within the regulatory elements themselves (Figure 3.2A). Moreover 

these enzymes do not have cytosines (or guanines) in their cognate sequence that may 

interfere with the digestion, since cytosines are involved in the formation of protein-DNA 

cross-links, together with the amino groups of lysines (Orlando et al., 1997). Cross-linked 

chromatin was digested overnight, purified DNA was quantitated at the spectrophotometer 

(ODA260) and used as template in PCR reactions using different set of primers that were 

designed in order to amplify regions of DNA across the cutting sites of the restriction 

enzymes (Figure 3.2A). Figure 3.2B shows that the enzymes failed to digest ChlP-ready 

chromatin as the region between the regulatory elements of uPA can still be amplified.
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F14 F18 F19

MP

R19 R22 R26

(324 bp)

(428 bp)

(730 bp)

(1574 bp)

Primers

F19/R22

F18/R19

F18/R22

F14/R26

100 100 50 100 50 09 ° fused in PCR

Figure 3.2. The restriction enzyme digestion does not completely cut the IVS between 
the enhancer and MP of uPA.
Aliquots of ChlP-ready chromatin were digested with restriction enzymes that do not cut 
(EcoRI) or cut (Msel and Dral) the IVS, as described in material and methods. After 
purification recovered DNA was measured and used as template in PCRs reactions. (A) 
Scheme (not to scale) of the amplified regions using the indicated primer sets (see Table I). 
Restriction sites of Msel and Dral are reported as dotted or broken vertical lines, 
respectively. White boxes: amplified fragments. Arrows with full heads: primers and their 
orientation; empty arrowhead: transcription start site. Empty box with E: enhancer. Empty 
box with MP: minimal promoter. 100 or 50 ng of genomic DNA from the different 
digestions were amplified by PCR, and DNA products were fractionated on a 2% agarose 
0.5x TBE gels and stained with EtBr. (B) Amplification of specific IVS fragments, across 
restriction sites, still occur after digestion.

3.1.3. ChlP-ready chromatin is accessible to MNase cleavage.

We then decided to digest ChlP-ready chromatin, with MNase, an enzyme widely 

employed in chromatin studies (Turner, 2001) (van Holde, 1989). MNase is a processive 

enzyme that binds and cleaves unprotected chromatin DNA in a processive manner 

(typically the internucleosomal linker), converting it to free nucleotides. The digestion
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ends when the enzyme meets a physical barrier to cleavage. As a result the amount of 

DNA recovered at each digestion time point, and measured as O.D.A260, decreases (Figure 

3.3A). The pattern of MNase digestion obtained in a time-course experiment shows that 

ChlP-ready chromatin from PC3 cells was readily and increasingly cleaved by the enzyme 

to poly-, mono- and sub-nucleosomal particles (Figure 3.3B). Next, equal amounts of 

genomic DNA from the various digestion time-points of Figure 3.3B was subjected to PCR 

reactions with sets of primers that amplified increasingly larger (from 145 to 250 bp) 

fragments in the uPA enhancer region (Figure 3.3C). The results showed that only 

nucleosome-size genomic fragments could be amplified using material from all the 

digestion time points (Figure 3.3D), thus confirming the accessibility to and the cleavage 

by MNase of the uPA enhancer region.
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Figure 3.3. MNase digestion time-course of ChlP-ready chromatin and detection of 
nucleosome-size fragments in the enhancer region. (A) 1,200 p i g  of ChlP-ready 
chromatin were digested with MNase. At increasing times, aliquots of the reaction were 
withdrawn, the digestion was stopped and genomic DNA purified. After purification, DNA 
was measured and the percentage of recovery plotted in graph. (B) Equal amounts of 
genomic DNA from each time point were fractionated on a 2% agarose gel in 0.5x TBE 
and visualized with EtBr. M: markers; left marker: 1 kb DNA ladder (Fermentas); right 
marker: Mass Ruler DNA Ladder (100 bp ladder; Fermentas). n, 2n, etc. = 
mononucleosomes, dinucleosomes, etc. (C) Scheme (not to scale) of the amplified region 
using the indicated primer sets (see Table I). Striped boxes: amplified fragments. Arrows: 
primers and their orientation. White box with E: enhancer. Equal amounts of genomic 
DNA from the different digestion time points (panel A-B) were amplified by PCR. (D)
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Only mononucleosome-size fragments (145 -  189 bp) can be amplified in the enhancer 
region using genomic DNA from all digestion time points

3.1.4. PCR reactions with genomic DNA from MNase digested ChlP- 

ready chromatin reveals fragments with a distinctive amplification 

pattern.

We then repeated the PCR amplification protocol in the uPA MP region. Since we wanted 

to exclude the presence of genomic fragments larger than 200 bp (mononucleosome size), 

we deliberately designed two sets of primers spanning 464 bp and 320 bp respectively 

(Figure 3.4A), and expected to be able to amplify genomic DNA only by using material 

from the early digestion time points (see Figure 3.3B). As shown in Figure 3.4B, primer 

sets F22/R26 and F26/R31 showed that the amplification signal decreased by using 

genomic DNA from early and intermediate MNase digestion time-points, but was rescued 

with material from later (20 and 50 minutes) time points. However, the amplification of 

two fragments of similar size upstream of F22 and one in the enhancer region displayed the 

progressive loss of the PCR signal, as expected. The amplification pattern of fragments 

F22/R26 and F26/R31 apparently contradicts the MNase digestion kinetics and the results 

obtained in the enhancer region, shown in Figure 3.3. However, one must recall that 

MNase is a processive endonuclease, as mentioned before, that causes a generalized loss of 

genomic DNA with increasing digestion and, consequently, an increase in the relative ratio 

of MNase-resistant to -sensitive material. If our interpretation were correct, the lowest 

amplification signals should then be rescued by “spiking” the material from the specific
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digestion time-points with genomic DNA from the 50 minutes digestion time-point. We 

therefore mixed equal amounts of the material yielding the lowest PCR signal for the 

amplicons amplified by primer sets F22/R26 and F26/R31 (10 and 20 minutes, 

respectively; Figure 3.4B) with material from the 50 minutes digestion time point and 

subjected the samples to PCR reactions. As shown in Figure 3.4C the signal for both 

amplicons was rescued, indicating that the 50 minutes digestion time point contains more 

amplifiable copies of the specific genomic fragments, originating from the cleavage- 

resistant chromatin population.
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Figure 3.4. Detection and characterization of DAF amplicons in the MP region of the 
uPA gene.
(A) Scheme (not to scale) of the amplified regions and primers used. Full arrowheads: 
primers (Table I) and their orientation. Empty arrowhead: transcription start site. White 
and hatched boxes: amplified fragments; MP: minimal promoter; roman number I: first, 
untranslated exon of the uPA gene; white and black boxes with roman number II: 
untranslated and translated portions, respectively, of the second exon of the uPA gene. 
Equal amounts of genomic DNA from each MNase digestion time-point were amplified 
with the appropriate primers (panel A) and PCR products revealed on a 2% agarose gel in 
0.5x TBE stained with EtBr. Amplification products of the enhancer region (primer set 
F5/R14) or the region upstream of MP (primer sets F18/R21 and F19/R22) are visible at 
the 0 minutes time points and the signal is lost in the following time points digestion (B). 
In panel (C) amplicons F22/R26 and F26/R31 show a loss of PCR signal using material 
originated from early and intermediate MNase digestion time points. The signal is then 
recovered at later time points revealing the presence of amplicons resistant to MNase 
digestion. Equal amounts of the material yielding the lowest PCR signal for the DAF-A 
and DAF-B amplicons (10 and 20 minutes, respectively; Panel C) were mixed with 
material from the 50 minutes digestion time point and subjected to PCR reactions with 
specific primers. As shown in panel (D) the signal for both amplicons was rescued, 
indicating that the 50 minutes digestion time point contains more amplifiable copies of the 
specific genomic fragments, originating from the cleavage-resistant chromatin population.

A model depicting the interpretation of this result is shown in Figure 3.5. In PC3 cells the 

uPA gene is present in multiple copies, but not all copies are transcriptionally active 

(Helenius et al., 2001). We postulate that the regulatory region of the gene is found in two 

chromatin configurations which differ in their sensitivity to MNase cleavage: one 

configuration is sensitive to digestion, while the other is resistant. However, these 

populations represent a minute amount of the total chromatin of PC3 cells, since the vast 

majority is represented by non-uPA chromatin. These three populations (sensitive and 

resistant uPA chromatin, plus non-uPA chromatin) also make up total ChlP-ready 

chromatin from PC3 cells and their differential sensitivity to MNase affects the genomic 

DNA content of samples at different digestion time points. The rate at which the enzyme
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cleaves the non-uPA and the sensitive uPA chromatin populations is the same, but their 

presence is detected in significantly different ways. Since non-uPA chromatin represents 

the vast majority of ChlP-ready chromatin from PC3 cells, its amount can be measured as 

O.D.A260 at each digestion time point and can be considered a good estimate of the total 

DNA recovered (represented by the large circles in the Figure 3.5). On the other hand, in 

our experimental set-up uPA chromatin can only be revealed by PCR amplification of 

specific sequences, which are, therefore, “amplifiable” (small white circles in the Figure 

3.5). A single double-stranded MNase cut in an “amplifiable” sequence renders it “non- 

amplifiable” (crossed-out circles Figure 3.5) and dramatically reduces their PCR detectable 

pool, so that, at intermediate digestion, all the sensitive uPA chromatin population is 

converted to “non-amplifiable” material (compare the number of white vs. crossed-out 

circles in each large circle in the Figure 3.5). Conversely, the MNase-resistant uPA 

chromatin population (black circles Figure 3.5) is not affected by cleavage and, thus, is 

present in the same amount in the recovered DNA at each digestion time point and is 

amplifiable. Therefore: since the amount of amplifiable material from the resistant uPA 

chromatin population is constant, while that from the sensitive uPA chromatin population 

decreases, the relative ratio of resistant/sensitive “amplifiable” material increases at each 

digestion time point (compare the number of black vs. white circles in each large circles in 

the Figure 3.5). In other words: at early digestion time points amplifiable DNA from uPA 

chromatin originates from both the sensitive and the resistant population, whereas at 

intermediate and late digestion time points amplifiable DNA originates only from the 

resistant population. By the same token, the amount of total recovered DNA at each 

digestion time point (as O.D.A260 or as percentage of the undigested sample; large circles



Figure 3.5) decreases (Figure 3.3A) and, consequently, also its concentration will decrease 

if each sample is resuspended in the same volume. However, the relative ratio of 

resistant/total chromatin DNA increases at each digestion time point, since the amount of 

DNA from resistant uPA chromatin is constant (black circles Figure 3.5), and this will also 

increase the ratio of “amplifiable/non-amplifiable” sequences. Thus, PCR samples loaded 

with the same amount of genomic DNA (100 ng) contain more “amplifiable” sequences if 

the material is taken from the late digestion time point than from the early ones. As a 

result, samples containing material from the early digestion time points (few “amplifiable” 

sequences) display a loss of the PCR signal, whereas samples containing material from the 

late digestion time point show a rescue of the PCR signal (Figure 3.4B). Since F22/R26 

and F26/R31 amplicons have a distinctive amplification pattern they were named DAF.
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Figure 3.5. Scheme representing the interpretation of the distinctive amplification 
pattern of fragments amplifyed by PCR.
MNase cleaves unprotected DNA converting it to free nucleotides in a processive manner 
and, as a result, the amount of DNA recovered at each digestion time point decreases (see 
also Figure 3.3 A and B). The decrease in genomic DNA recovery is indicated in the figure 
and depicted by the decrease in size of the large circles. We postulate that the regulatory 
region of the gene is found in two chromatin configurations: one is more represented and 
sensitive to digestion (small white circles in the figure), while the other is less represented 
and is resistant to digestion (black circles). During MNase digestion a single nick in an 
“amplifiable” sequence renders it “non-amplifiable” (crossed-out circles), but the MNase- 
resistant uPA chromatin population is not affected. Therefore the relative ratio of 
resistant/sensitive “amplifiable” material increases at each digestion time point (compare 
the number of black vs. white circles in each large circles in the figure), implying that at 
intermediate and late digestion time points amplifiable DNA originates only from the 
resistant population. As mentioned above also the amount of total recovered DNA at each 
digestion time point (large circles) decreases and, consequently, the relative ratio of 
resistant/total chromatin DNA increases at each digestion time point. As a result loading 
the same amount of total of DNA in a PCR (large squares) for each digestion time point, 
samples containing material from the early digestion time points will have an high number 
of “amplifiable” sequences, that will decrease in the middle time points and that will 
increase again at late time points giving the PCR pattern shown in Figure 3.4C and D.
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3.1.5. Different resistant fragments are presents in the MP region of uPA.

Amplicons F22/R26 and F26/R31 share a common primer (F/R26 in Figure 3.4A); 

however, they displayed the lowest amplification signal at different time points. Thus we 

asked if they belonged to the same or different genomic populations by amplifying the 

region spanning both fragments using primers F22 and R31 (Figure 3.6A). In this case the 

amplification signal decreased with increasing digestion time (Figure 3.6B). Thus 

amplicons F22/R26 and F26/R31, specifically located at and upstream of the MP region of 

the uPA gene, belong to different DNA fragments, which become evident after enzymatic 

cleavage of the overlapping sensitive population to non-amplifiable material. Since that 

F22/R26 and F26/R31 amplicons were named DAF-A and DAF-B respectively.
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Figure 3.6. Presence of different DAFs amplicons in the MP region of the uPA gene.
(A) Scheme (not to scale) of the amplified regions and primers used. Full arrowheads: 
primers (Table I) and their orientation. Empty arrowhead: transcription start site. White 
and hatched boxes: amplified fragments; MP: minimal promoter; roman number I: first,
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untranslated exon of the uPA gene; white and black boxes with roman number II: 
untranslated and translated portions, respectively, of the second exon of the uPA gene. (B) 
Equal amounts of genomic DNA from each MNase digestion time-point were amplified by 
using the F22/R31 primer set (panel A) and PCR products revealed on a 2% agarose gel in 
0.5x TBE stained with EtBr. Amplification products are visible only at the 0 and 5 minutes 
digestion time points, indicating that amplicons F22/R26 and F26/R31 do not belong to the 
same genomic fragment, but represent different chromatin populations.

3.1.6. Southern analysis of MNase digested ChlP-ready chromatin shows 

that DAF regions are subpopulation of the uPA regulatory region.

The speculation that DAF fragments originate from a MNase-resistant chromatin 

population implies that: 1) overlaying a Southern blot with the appropriate probe could 

show the presence of a specific resistant fragment at the late digestion time points; 2) the 

accumulation of mono-nucleosomes from a sensitive chromatin population would be 

different (more rapid), at the different digestion times, from that of a mixed (sensitive + 

resistant) chromatin population (slower). ChlP-ready chromatin was digested with MNase, 

as described in Materials and Methods. After purification, 15 pig aliquots of genomic DNA 

from each time point were fractionated on two separate agarose, gels, stained with EtBr 

and photographed (Figure 3.7 left panels in A and B). Fractionated DNA was transferred to 

a nylon membranes and the blots were incubated with specific probes for the enhancer 

(Figure 3.7 right panel in A) and DAF-A (Figure 3.7 right panel in B). We chose to use 

DAF-A as probe since the rescue of its PCR signal already occurred at 20 minutes, as 

compared to DAF-B and -Bx, where it occurred only at 50 minutes (see Figure 3.4B and 

C). Moreover, the enhancer region was chosen as a comparison because it did not show 

any recovery of the PCR signal (Figure 3.3C) and, therefore, it might represent a chromatin



population homogeneously more sensitive to cleavage than bulk. Genomic DNA in the 

EtBr stained gels was quantitated normalized to the value obtained for the 0 time point 

(sonicated material, no MNase digestion, arbitrarily set to 1) and plotted, together with the 

percentage of DNA recovery after MNase digestion at each digestion time point (see 

Figure 3.7C). The radioactive membranes were exposed and the radioactivity signals from 

each lane of both Southern blots (Figure 3.7 right panels in A and B) were acquired and 

quantitated by phosphoimager, normalized to the respective bulk chromatin values (EtBr 

stain; Figure 3.7 left panels in A and B) and then plotted as percentage of the value 

obtained for the 0 time point (sonicated chromatin, no MNase digestion, arbitrarily set to 

1). The plot in Figure 3.7C shows that both gels were loaded essentially with the same 

amount of material at each digestion time point, thus compensating for the loss of genomic 

DNA due to MNase processivity. An analysis of the Southern blot labeled with the DAF-A 

probe (Figure 3.7 right panel in B) did not reveal the presence of a 464 bp band, 

corresponding to DAF-A at any digestion time point. Therefore we asked whether it was 

possible to show a differential accumulation of mono- and sub-nucleosomes between the 

enhancer and DAF-A regions, which we postulate to be made up by a homogeneously 

sensitive vs. mixed (i.e. sensitive and resistant) chromatin population, respectively. To our 

surprise a comparison of the radiolabeled blots with their respective EtBr stained gels 

(Figure 3.7 right and left panels, respectively, in A and B) indicated that the enhancer and 

DAF-A regions yielded a substantial mono- and sub-nucleosomal fraction already after 

sonication, as compared to bulk chromatin. This suggested that chromatin in the regulatory 

region of the uPA gene was more sensitive to “mechanical” severing than bulk chromatin 

and corroborated the result shown in Figure 3.1, where the 1,574 bp fragment was

78



detectable only in the input sample, but not in the immunoprecipitated material. A 

technical implication of this result was that sonication did not equally affect all chromatin. 

It appeared, then, that further MNase digestion of such material had a reduced chance to 

highlight a difference in the accumulation of mono- and sub-nucleosomes from a sensitive 

(enhancer) vs. mixed (DAF-A) population. However, when we plotted the quantitation 

results of the probed Southern blots (Figure 3.7D), we could observe a different behavior 

of the enhancer and DAF-A regions. The former was rapidly digested and reached a 

plateau after 5 minutes, indicating that no further conversion to mono- and sub- 

nucleosomes could occur. The DAF-A region, on the other hand, was converted to mono- 

and sub-nucleosomes more slowly and reached the plateau after 10 minutes. Interestingly, 

Figure 3.3B shows that the lowest PCR signal (approximately 50 fold less than the signal 

at the 0 time point) yielded by the DAF-A fragment occurs at this digestion time point, 

when further conversion of this region to mono- and sub-nucleosomes could not occur. 

This observation, together with the lack of a detectable fragment in the Southern blot 

(Figure 3.7 right panel in B), indicates that such DAFs are present in a very low amount as 

the Southern blot technique is not sufficiently sensitive to reveal DAF-A. However, they 

are detectable by the exponential amplification provided by PCR that represents a more 

sensitive detection system.
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Figure 3.7. DAFs correspond to a low represented subpopulation of uPA gene.
ChlP-ready chromatin was digested with MNase, as described in Materials and Methods. 
After purification, 15 /^g aliquots of genomic DNA from each time point were fractionated 
on two separate 1% agarose, 0.5x TBE gels, stained with EtBr and photographed (left 
panels in A and B). Fractionated DNA was transferred to nylon membranes as described 
in material and methods. The blots were incubated with specific radiolabeled probes for the 
enhancer and DAF-A obtained by PCR using primers F5/R14 and F22/R26, respectively 
(see Table I). The radioactive membranes were exposed and the acquired images are 
shown in (A and B right panels). Genomic DNA in the EtBr stained gels was quantitated 
using Image Quant software, normalized to the value obtained for the 0 time point 
(sonicated material, no MNase digestion, arbitrarily set to 1) and plotted in (C) (full 
triangles: EtBr stain of the left panel in A; empty squares, EtBr stain of the left panel in B), 
together with the percentage of DNA recovery after MNase digestion at each digestion 
time point (empty circles). The radioactivity signals from each lane of both Southern blots 
(right panels in A and B) were quantitated with Image Quant software, normalized to the
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respective bulk chromatin values (EtBr stain; left panels in A and B) and then plotted as 
percentage of the value obtained for the 0 time point (sonicated chromatin, no MNase 
digestion, arbitrarily set to 1) in (D). Full triangles: enhancer probe signal; empty squares: 
DAF-A probe signal. A.U.: arbitrary units. The graph in (C) shows that both gels were 
loaded essentially with the same amount of material at each digestion time point, thus 
compensating for the loss of genomic DNA due to MNase processivity. The quantitation 
results plotted in (D), show a different behavior of the enhancer and DAF-A regions. The 
former was rapidly digested and reached a plateau after 5 minutes, indicating that no 
further conversion to mono- and subnucleosomes could occur. The DAF-A region, on the 
other hand, was converted to mono- and sub-nucleosomes more slowly and reached the 
plateau after 10 minutes. However the analysis of the Southern blot labeled with the DAF- 
A probe (right panel in B) did not reveal the presence of a 464 bp band, corresponding to 
DAF-A at any digestion time point, indicating that the Southern blot technique is not 
sufficiently sensitive to reveal DAF-A and that DAFs correspond to a little represented 
subpopulation of uPA gene only detectable by PCR.

3.1.7. Defining the borders of DAF-A and DAF-B.

Since DAF-A and DAF-B represent different chromatin populations we next established 

their size by amplifying increasingly longer fragments, assuming that the amplification 

pattern of amplicons F22/R26 and F26/R31 would be maintained if longer fragments 

belonged to the same chromatin populations. Figure 3.8B shows that the amplification 

pattern of DAF-A was lost using either primer F21 (5’ extension) in combination with R26 

or primer R27 (3’ extension) in combination with F22. This suggests that primers F22 and 

R26 are located close to or at the borders of DAF-A. On the other hand we could extend 

the amplification pattern of DAF-B in the 3’ direction, using primers R34 and R36, but not 

R37, in combination with F26 (Figure 3.8C). However, by using primer F25 in 

combination with R31 the pattern of amplicon DAF-B was lost in the 5’ direction. Thus 

DAF-B could be extended to the untranslated portion of the second exon of the uPA gene
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(Figure 3.8A) and (Riccio et al., 1985). Amplicon F26/R36 was named DAF-B “extended” 

(DAF-Bx).
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Figure 3.8. Defining the borders of DAF-A and -B.
Genomic DNA prepared as in Figure 3.3 was amplified with primers located upstream and 
downstream of DAF-B (F25 and R34, R36, and R37, respectively) and -A (F21 and R27, 
respectively) in combination with the upstream or downstream primers used in Figure 3.4 
that define the amplification pattern of DAF-A and -B. The PCR products were 
fractionated on a 2% agarose gel in 0.5x TBE and visualized by EtBr staining. (A) Scheme 
of the primer sets used and of the amplified regions (not to scale). White and striped boxes 
are as in Figure 3.4 Black box: DAF-Bx amplicon. E: enhancer. MP: promoter. I: first exon 
and II: second exon of the uPA gene (white box: untranslated region). (B) The 
amplification pattern of DAF-B is extended in the coding region of the uPA gene by using 
primers R34 and R36 in combination with F26 and is lost using primer R37. The pattern
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could not be extended 5’ of DAF-B, using primer F25 (upstream of F26) in combination 
with R31. (C) Loss of the amplification pattern of DAF-A by using primer F21 in 
combination with R26 and F22 in combination with R27.

3.1.8. DAF-A, -B and -Bx amplicons represent discrete chromatin 

structures with different protein contents

Given their proximity to the uPA MP, we asked if the DAF-A, -B and -Bx amplicons were 

associated with transcription and analyzed their protein content. We focused our attention 

on three polypeptides: hi stone H3, since its post-translational modifications are strictly 

related to the transcriptionally active or inactive state of the gene (Nightingale et al., 2006), 

HMGN proteins, which are components of active chromatin (Bustin, 1999), and RNAPII. 

To perform the experiments we used MN-ChlP. ChlP-ready chromatin was digested with 

MNase for 50 minutes and subsequently immunoprecipitated with the antibodies indicated 

in Figure 3.9. The resulting genomic DNA was amplified by PCR using the primers sets 

for DAF-A, -B and -Bx (Figure 3.9A). The results in Figure 3.9B show that DAF-A 

contains histone H3 both acetylated and dimethylated at lysine 9. This finding is intriguing, 

since the modifications affect the same residue and have opposite effect on transcriptional 

activation, but we did not investigate this issue further. The histone modifications 

associated with DAF-B (H3K4me2, H3K9ac and H3K14ac) are all established marks of 

transcriptionally active chromatin (Bernstein et al., 2005; Schiibeler et al., 2006) (Figure 

3.9B). This is in agreement with previous results showing the presence of a DNase I 

hypersensitive site on the uPA MP in PC3 cells (Ibanez-Tallon et al., 2002). We also found 

that DAF-B is associated with HMGN1, another hallmark of transcriptionally active
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chromatin. Unexpectedly, we found DAF-Bx to be associated only with H3K9ac and 

H3K14ac (Figure 3.9B), which suggest that DAF-B and -Bx may represent different 

chromatin populations. This view is supported by the experiment showing that only DAF- 

B is associated with RNAP II in its elongating form (phosphorylated at serine 2 of the 

CTD), whereas DAF-A and DAF-Bx are not (Figure 3.9C). Overall the results indicate that 

the uPA MP region contains three distinct chromatin populations, one of which (DAF-B) is 

actively engaged in transcription.

B

JiL ■ih

Ch.I.P. antibodies 

HMG histone H3

F22 F26

R26

■4

R31

DAF-A

A °.C  Jkr ^
primers

DAF-A

F26/R31DAF-B

DAF-Bx F26/R36

DAF-B

DAF-Bx

c m ...

R36

RNAP-II

£  c f / • / /  primers

DAF-A

F26/R31DAF-B

DAF-Bx F26/R36

Figure 3.9. Different protein content of DAF-A, -B and -Bx.
ChlP-ready chromatin was digested for 50 minutes with MNase and subsequently 
immunoprecipitated with the antibodies indicated in the figure, with an antibody against 
the uPA receptor (unrelated) or treated like the immunoprecipitated samples, but omitting 
the antibody (mock). The immunoprecipitated, purified genomic DNA was amplified with
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the primer sets specific for DAF-A, -B and -Bx and fractionated on a 2% agaose gel. Input 
DNA was a 1:1000 dilution of the DNA from the 50 minutes digestion time-point prior to 
immunoprecipitation. (A) Scheme of the primer sets used and of the amplified regions (not 
to scale). Symbols are as in Figure 3.8. (B) Amplification of immunoprecipitated genomic 
DNA with antibodies to histone H3 post-translational modifications and HMGN proteins, 
whereas in (C) amplification material was from DNA immunoprecipitated with antibodies 
against the functionally different forms of RNAP II. DAF-A, -B and-Bx display 
substantially different protein contents and only DAF-B is associated with the elongating 
form of RNAP II (CTD-P-S2) indicating the presence of three distinct chromatin 
population in the uPA MP region.

3.1.9. The presence of DAF-A, -B and -Bx depends on ongoing 

transcription.

The protein composition of DAF-A, -B and -Bx and the specific association of DAF-B 

with the elongating form of RNAP-II prompted the speculation that the amplicons might 

underlie large complexes of transcriptional nature. Thus we treated PC3 cells with a - 

amanitin, an inhibitor of RNAP-II (Casse et al., 1999; Nguyen et al., 1996), and asked 

what was the fate of the DAF amplicons in drug-treated PC3 cells, assuming that 

complexes not involved in transcription would persist despite the treatment. ChlP-ready 

chromatin was prepared from a-amanitin-treated cells and then used for a MNase digestion 

time-course experiment. Purified DNA from each digestion time point was amplified with 

the specific primers for DAF-A, -B, -Bx and with the F29/R31 primer set, amplifying a 

nucleosome-size fragment (199 bp) within DAF-B (Figure 3.10A). Figure 3.10B shows 

that the PCR signal of DAF-B gradually decreased and was not rescued using material 

from the 50 minutes time point, unlike the experiments in Figure 3.4B. Unexpectedly, also 

the signals for DAF-A and -Bx decreased throughout the digestion time course. However,
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at all digestion time points we were still able to detect nucleosome size genomic fragments 

located within DAF-B (199 bp in Figure 3.1 OB) and on the enhancer (150 bp, not shown), 

suggesting that drug treatment had perturbed the specific structures associated with DAF- 

A, -B and -Bx, but not the overall structure of the regulatory region. The results indicate 

that the presence of the DAF amplicons depends on active transcription.
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Figure 3.10. The presence of DAF-A, -B and -Bx depends on active transcription.
The concentration of a-amanitin to be used in PC3 cells treatment (10 mg/ml for 24 hours) 
was determined in a dose-response experiment in which the endogenous levels of uPA 
mRNA were determined by qRT-PCR at each a-amanitin concentration (data not shown).
(A) Scheme of the amplified regions and the primers used for DAF amplicons are as in
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Figure 3.8. Squared box: the 199 bp (nucleosome size) fragment amplified with the 
F29/R31 primer set is contained in the DAF-B amplicon. (B) MNase-digestion of cross- 
linked chromatin from a-amanitin-treated PC3 cells generates a genomic DNA ladder 
similar to that obtained from untreated cells (compare with figure 3.3B). n, 2n, 3n: mono-, 
di- and tri-nucleosome size DNA; M: DNA size marker (fragments length is indicated to 
the right). (C) Loss of the amplification pattern of DAF-A, -B and -Bx using MNase- 
digested, ChlP-ready chromatin from a-amanitin-treated PC3 cells, as detected on a 2% 
agarose, 0.5x TBE gel stained with EtBr. The results indicate that the structures associated 
with the DAF amplicons are sensitive to drug treatment of PC3 cells, but the nucleosomal 
structure of the uPA regulatory region is maintained.

3.1.10. Chromatin proteins and RNAP II content of nucleosome-size 

fragments in the uPA enhancer region.

We thought that the presence of specific transcription-dependent chromatin structures in 

the uPA MP region might facilitate our search for evidences of an interaction between the 

enhancer and the promoter. Since DAF-B spans the MP and was found associated with 

RNAP II, this was the most likely candidate for such an interaction. Therefore we asked if 

the MN-ChIP immunoprecipitates that contained DAF-B (see Figure 3.9) also included one 

or more fragments (~145 bp to ~ 190 bp long) encompassing the uPA enhancer, as detailed 

in the scheme of Figure 3.11A. The results of Figure 3.1 IB show that all the 

immunoprecipitates contained fragments spanning the enhancer, with the notable exception 

of fragment 6, which was not immunoprecipitated by any of the antibodies used (Figure

3.1 IB). Interestingly fragment 7 corresponding to the DNA sequence immediately 

upstream of the enhancer was found to associate with the poised form of RNAP-II (CTD- 

S5p) (Figure 3.1 IB). However, the only fragment immunoprecipitated by the same 

combination of antibodies that also immunoprecipitated DAF-B, including a-CTD-S2p

87



and a-HMGNl, was fragment 1 (Figure 3.1 IB). We conclude that fragment 1 and DAF-B 

represent populations of enhancer and MP interacting with each other.
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Figure 3.11. Protein association of nucleosome-size fragments in the enhancer region 
of the uPA gene.



The same material immunoprecipitated for the experiment in Figure 2.9 was amplified 
with primer sets spanning various genomic fragments at and around the uPA enhancer. 
PCR products were visualized on a 2% agarose, 0.5x TBE gel by EtBr staining. (A) 
Scheme (not to scale) of the uPA enhancer (black box with E) region, of the primers used 
and their orientation (black arrowheads and Table I) and of the expected amplification 
products (frag. 1, 2, 3 and 7, 8: -145 bp; frag. 4, 5 and 6: -190 bp amplification products).
(B) Amplification products of different PCR reactions with the indicated primers. Various 
genomic fragments were associated with different histone H3 post-translational 
modifications, HMGN proteins and RNAP-II. Only frag. 1 was associated with the exact 
same proteins as DAF-B (compare with Figures 2.9B and C).

3.1.11. The presence of RNAP II on the uPA enhancer is due to its 

interaction with the MP.

The presence of RNAP II on the uPA enhancer raises the possibility that this region is part 

of an independent transcription unit, nested in the uPA locus. To formally exclude the 

presence of RNA in the enhancer region we reverse-transcribed total RNA from PC3 cells 

with random primers and amplified the resulting products with primers spanning fragment 

1 and fragments of similar size located 5’ (fragment 7) or 3’ (fragment 8) of fragment 1 

(Figure 3.12A); we also amplified a fragment in the coding region of the uPA gene from + 

194 to + 420 as positive control. The results in Figure 3.12B clearly indicate that the 

enhancer and neighboring regions are devoid of mRNA, which, as expected, is present in 

the coding region of the uPA gene. Therefore the presence of RNAP II CTD-S2p on the 

enhancer is likely to be due to its interaction with the MP. This was further supported by 

the absence of fragment 1 in the MN-ChIP immunoprecipitate (with a-CTD-S5p and a- 

CTD-S2p) from a-amanitin-treated PC3 cells (Figure 3.12C), in which we observed the 

loss of DAF-B (Figure 3.10B).
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Figure 3.12. The presence of RNAP I I  on the uPA enhancer is not due to a nested 
transcription unit and is sensitive to a-amanitin treatment of PC3 cells.
(A) Scheme depicting the primer sets used and the amplified fragments in the enhancer 
region of the uPA gene (not to scale). Black box with E: enhancer. (B) Total RNA was 
extracted, reverse-transcribed and increasing amounts amplified with the primers indicated 
in panel A, spanning fragments 1, 7 and 8 in the enhancer region and a 226 nt fragment in 
the coding region (see Table I). As controls, genomic DNA (+) and non-retrotranscribed 
RNA (-RT) were also amplified with the same primers. PCR products were visualized on a 
2% agarose, 0.5x TBE gel stained with EtBr. The lack of mRNA in this region indicates 
the absence of a cryptic transcription unit. (C) MNase-digested (50 minutes), ChlP-ready 
chromatin from a-amanitin-treated PC3 cells was immunoprecipitated with antibodies 
against the phosphorylated forms (CTD-S2p and CTD-S5p) of RNAP II. The 
immunoprecipitated material was amplified with primer sets for fragments 1, 7 and 8 and 
the PCR products and visualized as above. Following a-amanitin treatment of PC3 cells 
fragment 1 is no longer associated with RNAP II (CTD-S2p). The results indicate that the 
presence of RNAP II on the enhancer is due to its interaction with the MP (DAF-B).
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3.1.12. c-Jun, that specifically binds the uPA enhancer, is also associated 

with the DAF-B amplicon.

To reciprocate the experiment of Figure 3.1, we asked whether antibodies against c-Jun, a 

transcription factor that specifically binds the uPA enhancer and not the MP (Cirillo et al., 

1999; Nerlov et al., 1991) could also immunoprecipitate DAF-B. MN-ChIP 

immunoprecipitated material was amplified with primer sets spanning fragment 1 and 

fragment 8 on the enhancer and DAF-B on the MP (F7/R10, F11/R15 and F26/R31, 

respectively; Figure 3.13A). The results showed that both fragment 1 and DAF-B 

sequences were present in the immunoprecipitate (Figure 3.13B). However fragment 8 

(immediately downstream of fragment 1) is devoid of c-Jun (Figure 3.13B). Furthermore 

the presence of c-Jun in the enhancer and MP regions was abolished by the a-amanitin 

treatment of PC3 cells (Figure 3.13C), further corroborating the role of these fragments in 

the interaction. Overall, our results lead us to conclude that fragment 1 and DAF-B are 

populations of interacting enhancer and MP, as depicted in the model of Figure 3.14.

V
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Figure 3.13. c-Jun, a transcription factor specifically binding the uPA enhancer, 
immunoprecipitates the MP of the gene. The material used for the experiment in Figure 
3.9 was also immunoprecipitated with antibodies against c-Jun, a transcription factor that 
specifically binds the uPA enhancer. The immunoprecipitated genomic DNA was 
amplified with primer sets specific for enhancer (fragment 1 and fragment 8) and MP 
(DAF-B) sequences and the products visualized on a 2% agarose, 0.5x TBE gel by EtBr 
staining. (A) Scheme (not to scale) of the primer sets used and of the amplified fragments. 
Symbols are as in Figures 3.8 and 3.11. (B) Amplification of immunoprecipitated material 
with the appropriate primer sets shows that c-Jun is associated with both enhancer and MP 
sequences. C-Jun is absent from a sequence located downstream of the enhancer (fragment 
8). (C) MNase-digested (50 minutes), ChlP-ready chromatin from a-amanitin-treated PC3 
cells was immunoprecipitated with antibodies against c-Jun and the resulting purified DNA 
was subjected to PCR reactions with the overlapping F26/R29 and F29/R31 primer sets, 
spanning the whole DAF-B fragment, and with the F7/R10 primer set, spanning the 
enhancer. We chose to amplify fragments smaller than DAF-B in the MP region because 
the results of Figure 3.10 indicate that such fragment cannot be amplified using genomic 
DNA from a-amanitin-treated PC3 cells. However, a nucleosome-size DNA fragment can
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still be amplified in this region (199 bp amplicon in Figure 3.10). Thus we decided to 
check whether c-Jun was present on this fragment or on an overlapping fragment, 
immediately upstream (DAF-BL). The results show that c-Jun is absent from this region 
and from the enhancer in the immunoprecipitated material from a-amanitin-treated PC3 
cells.
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Figure 3.14. Model depicting the interaction between the regulatory elements of uPA.
The enhancer and promoter of the uPA gene interact by looping of the IVS (curved arrow). 
Enhancer and promoter are shown in the position occupied within frag. 1 (-2024/-1872) and 
DAF-B (-205/+114) amplicons (black bars). Spl and p300 are shown associated with the 
promoter and c-Jun associated with the enhancer; both are shown interacting with RNAP 
II. The elongating form of RNAP II (CTD-S2p) is shown entering the coding region. 
Striped boxes with question marks: other possible components contributing to the 
interaction between enhancer and promoter. Broken lines: sequences upstream and 
downstream of frag.l and DAF-B.

93



DISCUSSION -I-

For many years transcription has been thought of as mere consequence of binding of the 

transcriptional machinery to specific regulatory sequences. However, long-range chromatin 

interactions between distal regulatory elements have revealed a more complicated scenario 

(Fraser, 2006). The control of most genes involves the activities of remote elements, which 

are essential in turning on or off specific subsets of genes in a temporally and spatially 

regulated manner (Li et al., 1999). Thus it is of fundamental importance to understand the 

molecular mechanisms involved in this process.

3.2.1. MN-ChIP a new approach to study the interaction between DNA 

regions.

The p-globin cluster has provided a paradigm for long-distance interactions of regulatory 

elements. RNA-TRAP and 3C experiments have lead to the identification of interacting 

sequences (Carter et al., 2002; Tolhuis et al., 2002) and ChIP experiments have 

characterized the histone content of the chromatin fiber of the cluster (Litt et al., 2001a; 

Litt et al., 2001b). However, the experiments have been carried out independently and, 

thus, the protein composition of interacting sequences is inferred from the results. 

Therefore, formal evidence that specifically interacting structures have a defined protein 

composition is not yet available. This is, at least in part, due to inherent limitations of the



RNA-TRAP, 3C and ChIP technique. The former does not provide data on the protein 

composition of the interacting structures. In the latter, the sonication step produces DNA 

fragments that are too large for a high-resolution analysis, but sufficiently small to 

establish that interacting sequences (positioned many kilobases apart) are indeed located 

on different fragments. Extensive digestion of ChlP-ready chromatin with MNase has two 

advantages: 1) It generates genomic fragments that are physically defined by the endpoint 

of cleavage, since MNase is a processive enzyme that stops when it finds a (physical) 

barrier that hinders further cleavage; 2) It allows the study of the protein composition of 

the specific fragments.

3.2.2. Active transcription and DAF formation.

What generates the possible complexes that give rise to MNase-resistant genomic 

fragments is an open question. It is unlikely that this is due to nucleosomes sliding in a 

closely packed configuration since we have previously reported the presence of a DNase I 

hypersensitive site in PC3 cells in the exact location of the DAF-B amplicon (Ibanez- 

Tallon et al., 2002). Furthermore, an indirect end-labeling experiment to map nucleosome 

positioning in this region would not be informative, since PC3 cells have multiple copies 

of the gene and not all of them are transcriptionally active (Helenius et al., 2001). This 

would lead to the detection of patterns that, although different, would overlap, resulting in 

the inability to distinguish the contribution of each structure to the final result. We favor 

the hypothesis that DAF amplicons are generated by the formation of complexes of a 

transcriptionally competent nature. This is supported by the evidence that they are
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undetectable after cx-amanitin treatment of PC3 cells and by the presence of the 

phoshorylated form of RNAP-II on DAF-B, both implying that ongoing transcription is a 

requisite for their presence. Nevertheless, DAF-A, -B and -Bx amplicons appear to 

underlie different chromatin populations, as indicated by their physical boundaries and 

protein content (see Figures 3.8 and 3.9).

3.2.3. DAF reflects the dynamic “on”/”o ff ’ waves of transcription in a 

steady state gene expression.

As mentioned above, DAF amplicons represent chromatin subpopulations of all the copies 

of the gene present in immunoprecipitable material. Their amplification pattern becomes 

visible only when the sensitive population is fully digested by MNase. This occurs only at 

long digestion time-points, when a large amount of material has been processed to 

mononucleosomes by the enzyme (see Figure 3.3). The lack of detection of DAFs by 

Southern blotting analysis suggests that DAFs represents very small chromatin 

subpopulations. This observation is consistent with quantitation of the steady state uPA 

mRNA levels in PC3 cells indicate that not all gene copies are transcribed (Helenius et al., 

2001). Furthermore, previous reports indicate that constitutively active genes are not 

continuously transcribed. They shuttle between “on” and “off’ states spending more time 

in the “off’ state, so that, at any given time (steady-state level), the number of copies that 

are effectively engaged in transcription is underepresented (Levsky et al., 2002; Osborne et 

al., 2004; Ross et al., 1994). It is therefore feasible that DAF-A, -B and -Bx represent 

different structures formed during the onset of transcription, at steps that occur at low
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kinetic rate (Hahn, 2004), such as promoter escape by RNAP II (Krumm et al., 1995; 

Krumm et al., 1992).

3.2.4. The specific interaction of the uPA enhancer and MP: formation of 

a single transcription control unit and looping of the I VS.

Besides the presence of the same chromatin proteins (HMGN1) and post-translational 

modifications (PTM) of histone H3 (H3K4me2; H3K9ac; H3K14ac), the interaction of 

uPA enhancer and MP is supported by the association of specific genomic fragments 

(DAF-B and fragment 1, Figure 3.8), spanning the regulatory elements, with the 

elongating form of RNAP II and with transcription factors that specifically bind either the 

enhancer (c-Jun) or the MP (Spl) (Figures 3.13A and 3.1). Interestingly, the association 

of the same histone H3 post translational modifications and chromatin proteins with both 

the uPA enhancer and MP indicates the inherent inability of the ChIP approach to 

determine whether these proteins are actually present on both elements or if they are 

differentially contributed by enhancer and MP to the final structure. It also suggests, from a 

functional standpoint, that such a distinction is irrelevant, since both elements (and related 

chromatin structures) are required for transcriptional activation. More importantly, this is 

further supported by the association of RNAP-II, Spl and c-Jun with both elements, 

regardless of the location of their specific binding site, indicating that the resulting 

structure functions as a single transcription control unit.

97



3.2.5. The interaction between enhancer and MP of uPA persists after 

transcriptional activation.

The interaction between enhancer elements and proximal promoters culminate in the 

transcriptional activation event (Carter et al., 2002; Hatzis and Talianidis, 2002; Tolhuis et 

al., 2002) . However, it is not clear if such an event stems from the transient interaction of 

regulatory elements or through a more stable structure. Interestingly, we found that one of 

the sequences embedded in the uPA transcriptional control unit (DAF-B) spans from -205 

to +114 thus including a substantial portion of the coding region. This indicates that the 

interaction between enhancer and MP is maintained during the early stages of 

transcriptional elongation and suggests that the early step of transcription may require a 

more stable interaction of the regulatory elements than previously thought

SUMMARY -I-

In this chapter we provide evidences that the interaction between the enhancer and the MP 

of the uPA gene occurs through specific structures (DAFs), identified and characterized 

through their sequences, location and protein composition. In particular, the sequences at 

and around the MP region were discriminated by their distinctive and persistent 

amplification pattern, as the result of MNase digestion of ChlP-ready chromatin, which 

depletes genomic DNA of cleavage-sensitive sequences. Importantly, the presence of
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DAFs is transcription dependent. The results support a model in which the interaction of 

enhancer and MP is transcription-dependent, persists during the early stages of 

transcriptional elongation and causes the extrusion of the intervening sequence (looping).

Part of the data presented in this Chapter have been published in: Ferrai C. Munari D, 

Luraghi P, Pecciarini L, Cangi M, Doglioni C, Blasi F, Crippa MP. “A transcription- 

dependent MNase-resistant fragment of the uPA promoter interacts with the enhancer”. J 

Biol Chem. 2007 Feb 28.
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RESULTS AND DISCUSSION -II-

Poised uPA occupies a distinct RNAP-II CTD-S5p 
transcription factory. 

RESULTS -II-

4.1.1. MNase digestion of cross-linked chromatin reveals the presence of 

a cleavage-resistant fragment spanning the uPA promoter before and 

after transcriptional activation of HepG2 cells.

MN-ChIP, allowed us to physically map the interacting regulatory sequences of the 

constitutively expressed uPA gene in PC3 cells and to characterize their specific 

association with nuclear proteins (Ferrai et al., 2007). We then applied this procedure to 

chromatin from HepG2 cells, in which the uPA gene is transcriptionally induced by the 

treatment of cells with phorbol esters (Ibanez-Tallon et al., 1999). Figure 4.1 A shows that 

the mRNA levels of endogenous uPA mRNA increase in a time-dependent manner 

following TPA treatment of HepG2 cells. Thus ChlP-ready chromatin was prepared from 

HepG2 cells, either untreated or treated for three hours with TPA, and subjected to a 

digestion time-course with MNase, as previously described (Ferrai et al., 2007). The 

MNase digestion pattern obtained from ChlP-ready chromatin from TPA-treated HepG2 

cells (Figure 4.IB) shows that chromatin was increasingly cleaved by the enzyme to mono- 

and sub-nucleosomal particles. The same pattern was obtained from untreated HepG2 cells
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(not shown). Genomic DNA from the various digestion time-points was then subjected to 

PCR reactions with sets of primers amplifying increasingly larger (from 145 to 250 bp) 

fragments in the uPA enhancer region (Figure 4.1C). The results show that only core 

nucleosome- and chromatosome-size genomic fragments can be amplified using material 

from all the digestion time-points of untreated and TPA-treated cells (Figure 4 .ID). This 

suggests that the enhancer region maintains its essential nucleosomal structure both before 

and after TPA treatment of HepG2 cells. A similar analysis performed on the promoter 

region shows the presence of a MNase-resistant genomic fragment (Persistent Fragment = 

PF in Figure 4 .IE) spanning the minimal promoter of the gene, in agreement with what 

previously observed (Ferrai et al., 2007). Such fragment can be extended in the 5’ direction 

(Persistent Fragment extended = PFx; Figure 4.IE), but not in the 3’ direction (fragment 2; 

Figure 4 .IE). On the other hand, the presence of fragment 1, upstream of PF and 

overlapping with PFx (Figure 4. IE) is not detected in HepG2 cells, differently from what 

observed in PC3 cells (Ferrai et al., 2007), suggesting that the detection of some fragments 

may be cell line-specific. Interestingly, the presence of PF and PFx is detected both before 

and after TPA treatment of HepG2 cells, indicating that transcriptional induction does not 

noticeably alter the chromatin structure of the MP region.
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Figure 4.1. TPA do not affects sensitivity to MNase digestion on uPA gene.
(A). HepG2 cells were treated with TPA (Ibanez-Tallon et al., 1999) for the indicated 
times. Total RNA was extracted and processed for quantitative RT-PCR as described in 
material and methods. The normalized qRT-PCR results for each induction time-point 
were plotted in a graph. (B) Chromatin (treated or not with TPA) was cross-linked, 
fractionated, digested with MNase (for the times indicated) and genomic DNA purificated 
as described in material and methods. Bulk chromatin DNA at each digestion time-point 
was visualized by ehtidium bromide staining of a 2% agarose, IX TAE gel. (C) Scheme
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(not to scale) of the uPA gene regulatory region, outlining the enhancer (E), the minimal 
promoter (MP) and the genomic fragments (and their length) amplified with the indicated 
primers (see also Table 1). PF: persistent fragment; PFx: persistent fragment extended. (D) 
and (E) Genomic DNA from all the MNase digestion time-points of ChlP-ready 
chromatin, amplified with the indicated primers, was fractionated on agarose gels and 
visualized by Et-Br staining. The nomenclature of amplified fragments is as in panel (C).

4.1.2. Histone modification analysis shows that the regulatory elements of 

the uPA gene are in a permissive configuration before transcriptional 

activation.

We decided to investigate the chromatin composition of uPA regulatory elements before 

and after TPA induction and we studied the association of the enhancer and of the minimal 

promoter with histone H3 modifications associated with active (K4me2, K9ac, K14ac) or 

inactive (K9me2) chromatin (Nightingale et al., 2006). Thus we performed MN-ChIP 

experiments using ChlP-ready chromatin from untreated and TPA-treated HepG2 cells 

with antibodies against the specific histone H3 modifications. The rationale for the choice 

of amplicons (Figure 4.2A) was the following: 1) we have no evidence of a precise 

positioning of nucleosomes on the enhancer (Ibanez-Tallon et al., 1999) and therefore we 

wanted to test at least two alternative primer sets and compare them with a set of primers 

immediately outside the regulatory element; 2) we decided to split the PF amplicon in two 

smaller, overlapping amplicons (upstream PF and downstream PF = uPF and dPF, 

respectively; Figure 4.2C) to improve the resolution of the analysis in the MP region. Prior 

to transcriptional induction, fragment A, spanning the enhancer (Figure 4.2A), is 

associated with all histone H3 modifications indicating active chromatin (Figure 4.2B),
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whereas in fragments D and E (Figure 4.2A) we only observe the presence of methylated 

and acetylated histone H3 (K4me2 and K14ac; Figure 4.2B). Before induction we do not 

detect the presence of H3K9me2 in any fragment. Following transcriptional induction 

(Figure 4.2B) fragment A is associated with the same histone H3 modifications as it is 

prior to induction (Figure 4.2B). Fragments D and E, on the other hand, are both associated 

with H3K4me2 and K9ac, but differ in the content of H3K14ac, present on fragment D 

(Figure 4.2B), and H3K9me2, present on fragment E (Figure 4.2B). A similar analysis was 

carried out in the promoter region. Figure 4.2D shows that PF was associated with 

H3K4me2 and H3K9ac prior to induction and only with H3K4me2 following TPA 

treatment (Figure 4.2D). However, an analysis of the same region with smaller amplicons 

indicates that they are associated with H3K4me2, K9ac and K14ac both before and after 

transcriptional induction of the uPA gene with TPA (Figure 4.2D). These results indicate 

that the chromatin of enhancer and promoter regions of the uPA gene are in a 

transcriptionally “permissive” configuration before transcriptional activation, in agreement 

with the “poised” state of chromatin detected by DNasel hypersensitivity assay (Ibanez- 

Tallon et al., 1999). Moreover, the content of histone H3 modifications of the uPA 

regulatory elements is not substantially altered by transcriptional induction.
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Figure 4.2. The regulatory regions of uPA are in a permissive state also before 
induction.
(A) and (C) Schemes (not to scale) of the enhancer and MP regions, respectively, 
indicating the primers used for amplification, their location and the position of the 
amplified fragments with respect to the regulatory elements. (B) and (D) ChlP-ready 
chromatin was digested with MNase for 50 minutes and the resulting material 
immunoprecipitated with the indicated antibodies, as described in material and methods. 
The resulting purified genomic DNA was amplified and visualized on 2 %  agarose, IX 
TAE gels by Et-Br staining. Polyclonal anti-uPAR antibodies were used as the unrelated 
antibody (see material and methods).
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4.1.3. uPA Enhancer and MP are associated with a poised RNAP-II 

before transcriptional activation.

We further looked for the presence of the RNAP-II in the enhancer and MP chromatin by 

immunoprecipitating the same material used for the experiments of Figure 4.2 with 

antibodies against the differentially phosphorylated forms of RNAP-II (CTD-S5p and 

CTD-S2p). The immunoprecipitated DNA was amplified with the primers shown in Figure 

4.3A and C. The results show that prior to transcriptional induction both the uPA enhancer 

(fragments A and D; Figure 4.3B) and the MP (PF, uPF and dPF; Figure 4.3D) are 

associated with RNAPII CTD-S5p. Surprisingly also fragment E, upstream of the 

enhancer, was associated with the same form of RNAPII (Figure 4.3B). These results 

suggest that the regulatory elements of the uPA gene may be interacting prior to 

transcriptional induction of the gene and that such interaction involves larger genomic 

regions than the regulatory elements themselves, in agreement with our previous findings 

(Ferrai et al., 2007). Following TPA treatment, enhancer fragments A and D become 

associated with RNAP-II CTD-S2p, whereas fragment E remains associated with RNAP-II 

CTD-S5p (Figure 4.3B). Similarly the PF fragment, spanning the MP, becomes associated 

with RNAPII CTD-S2p, while its association with CTD-S5p persists (Figure 4.3D). Thus, 

the detection of uPA mRNA in HepG2 cells after three hours of TPA treatment (Figure

4.1 A), is accompanied by the association of both regulatory elements with the elongating 

form of RNAP-II. It is feasible that the uPA promoter and enhancer form a non-productive 

single transcriptional control unit before transcriptional induction, which then becomes 

productive following TPA treatment.
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Figure 4.3. Poised RNAP-II associates with the regulatory regions of uPA before 
induction.
(A) and (C) Schemes (not to scale) of the enhancer and MP regions, respectively, 
indicating the primers used for amplification, their location and the position of the 
amplified fragments with respect to the regulatory elements. (B) and (D) Material prepared 
as in Figure 4.2 was immunoprecipitated with anti-CTD-S2p and anti-CTD-S5p antibodies. 
Further processing was as in Figure 4.2.
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4.1.4. TPA treatment induces the conversion of RNAP-II from the hypo- 

to the hyper-phosphorylated state with an increase of both CTD-S2p and 

CTD-S5p forms.

The switch in the form of RNAP-II associated with the uPA gene regulatory elements 

following transcriptional induction (from CTD-S5p to CTD-S2p) raises the question on 

whether there is a variation in the relative amount of the two forms of RNAP-II in the 

nucleus following TPA treatment of HepG2 cells. A western blot analysis of the total 

RNAP-II content of HepG2 cells before and after transcriptional induction shows that the 

total amount of RNAP-II does not change (Figure 4.4A). However, the distribution 

between non-phosphorylated and phosphorylated forms is substantially altered, in that the 

former decreases and the latter increases (Figure 4.4A). We then investigated the content 

of the CTD-S5p and CTD-S2p forms of RNAP-II in HepG2 cells before and after 

transcriptional induction. The results (Figure 4.4A) show that both forms of RNAP-II 

increase following TPA treatment, indicating that phorbol esters induce a general 

conversion of hypophosphorylated RNAP-II to the hyperphosphorylated form, but not to 

one particular phosphorylated form.

4.1.5. A poised uPA gene occupies a distinct RNAP-II CTD-S5p 

transcription factory.

The above results show that the regulatory elements of the uPA gene interact with RNAP­

II yielding a non-productive (CTD-S5p) association before TPA treatment and a
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productive association (CTD-S2p) after transcriptional induction. Moreover, both forms of 

RNAP-II are present on the MP following transcriptional activation. Since transcriptionally 

productive interactions occur within transcription factories, our results raise the question 

on whether the association of the uPA gene with RNAP-II CTD-S5p occurs stochastically 

in the nuclear volume or in distinct nuclear structures. To investigate this issue we 

combined DNA FISH, using a fluorescently labeled BAC probe specific for uPA, with 

immunofluorescence, using antibodies against the differentially phosphorylated forms of 

RNAP-II in untreated or TPA-treated HepG2 cells on ultrathin cryosections (Branco and 

Pombo, 2006). Figure 4.4B shows representative images of the experiment, suggesting the 

colocalization of CTD-S5p with uPA gene both before and after TPA treatment and a strict 

colocalization of the uPA gene with CTD-S2p after transcriptional induction. Images from 

several fields were collected in different preparations and the colocalization of the uPA 

gene with CTD-S5p or CTD-S2p before and after transcriptional induction was quantified. 

We find a strong colocalization (approximately 90% of the observed fields) of the uPA 

gene with CTD-S5p before transcriptional induction, which is maintained (approximately 

80% of the observed fields) after TPA treatment (Figure 4.4C). On the other hand, in 

approximately 70% of the cases the uPA gene localizes away from CTD-S2p-containing 

structures prior to transcriptional induction and colocalizes with them in about 85% of the 

cases following induction (Figure 4.4C). We conclude that in uninduced HepG2 cells the 

association of the uPA gene with RNAP-II CTD-S5p occurs in specific structures, different 

from actively transcribing transcription factories (characterized by the presence of RNAP­

II CTD-S2p). Although the uPA gene strongly associates with RNAP-II CTD-S2p
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following TPA treatment, the uPA/RNAP-II CTD-S5p interaction persisted after 

transcriptional activation, thus corroborating our MN-ChIP findings (Figure 4.3).
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Figure 4.4. RNAP-II forms and association with uPA gene before and after TPA 
treatment.
In (A) equal amounts of total protein extracts were analyzed by WB, as described in 
material and methods, using antibodies specific for the N-terminal domain of RNAP-II 
(recognizing the -A- hypo-phosphorylated and -O- hyper-phosphorylated RNAP-II) and 
for CTD-S2p or CTD-S5p. The signal obtained with anti-actin antibodies was used to 
normalize RNAP-II, CTD-S2p and CTD-S5p signals. (B) Cryo-sections were prepared and 
were used to perform immuno-FISH experiments as described in (Branco and Pombo,
2006) using anti-CTD-S2p and anti-CTD-S5p antibodies and a BAC probe specific for 
uPA gene. Representative images of nuclear region containing the uPA gene are shown. 
uPA gene, RNAP-II forms and DNA are stained in red, green and blue respectively. (C) 
Plot showing the percentage of uPA localization with or away of (blue bars and purple bars 
respectively) RNAP-II factories containing CTD-S2p or CTD-S5p (mean ± SD from three 
independent experiments). The number of cells analyzed is reported at the bottom of the 
bars.
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DISCUSSION - II -

Transcription is highly compartmentalized in mammalian nuclei and occurs at specific 

foci, called transcription factories, enriched in the hyperphosphorylated form of RNAP-II, 

(Cook, 1999; Jackson et al., 1993; Wansink et al., 1993). It is now increasingly evident that 

nuclear architecture can influence genome function (Misteli, 2007) and that the process of 

compartmentalization represents a further level of complexity in the mechanism of 

transcriptional regulation.

4.2.1. The organization inside the nucleus: transcription is a 

compartmentalized process.

The limited number of transcription factories/nucleus compared with the larger number of 

active genes led to the prediction that more than one active gene is transcribed in each 

factory (Jackson et al., 1998) and this was recently shown to be the case by (Osborne et al., 

2004). In particular, since active genes go through transcription cycles, shuttling between 

an “on” and an “off’ state (Levsky et al., 2002; Osborne et al., 2004; Ross et al., 1994), it 

was reported that two genes co-localize to the same active factory when both are in the 

“on” phase, whereas when one or both are in the “o ff’ state they relocate away from each 

other and from the active focus (Osborne et al., 2004). This suggested a model in which 

active genes are brought to transcription factories to be transcribed (Chakalova et al., 2005; 

Osborne et al., 2004). The model implies that the association of genes with RNAPII occurs
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only within a transcription factory and that the subsequent synthesis of mRNA defines 

them as transcriptionally active. Here we show that in HepG2 cells, where transcription of 

the uPA gene can be induced by TPA treatment (Ibanez-Tallon et al., 1999), the gene has 

permissive chromatin conformation before its active transcription. In particular, both the 

enhancer and the promoter regions show the presence of specific histone H3 modifications 

associated with transcriptional activity. This is in agreement with what reported in a recent 

paper (Azuara et al., 2006) in which non-transcribed genes are associated with markers 

defining “active” chromatin. We also found that the uPA enhancer and MP are both 

associated with RNAP-II CTD-S5p prior to induction and become associated with RNAP­

II CTD-S2p following TPA treatment. The presence of the poised RNAP-II is particularly 

interesting, since it suggests that the enhancer and the MP may be interacting before TPA 

induction. These findings are also in line with what previously reported (Gomes et al.,

2006). However, immuno/FISH experiments provide evidence that the association of 

transcriptionally inactive genes with RNAP-II does not occur stochastically in the nuclear 

volume, but is confined to specific structures. Our results expand the previous model 

(Chakalova et al., 2005; Osborne et al., 2004) indicating that the association of some genes 

with RNAPII in specific nuclear structures occurs without mRNA synthesis and that 

transcriptional activity is not a prerequisite for their association with a transcription 

factory.
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4.2.2. Transcriptional compartmentalization has functional relevance for 

gene expression.

The functional importance of transcription compartmentalization may be that of locally 

concentrating the required factors and to ensure efficient interactions between the 

components of the transcriptional machinery (Bartlett et al., 2006). Recent results showing 

that lineage specific genes, remotely located from one another, frequently co-localize to the 

same transcription factory when actively transcribed (Osborne et al., 2004) strengthened 

the hypothesis of a possible coordinated gene regulation through their association with the 

same transcription factory/ies. An attractive hypothesis is the existence of specialized 

transcription factories (Bartlett et al., 2006) which differ in the content of specific 

transcriptional components thus creating distinct transcriptional environments (Cook, 

1999; Misteli, 2007). However, little experimental evidence supports the differential 

composition of transcription foci. The presence of discrete foci where genes with a 

permissive chromatin configuration are associated with the non-elongating form of RNAP­

II suggests the presence of “inactive” (or poised) transcription factories as functionally 

independent entities, distinct from the active ones. Thus, it is feasible that inactive foci, 

containing clustered RNAP-II CTD-S5p and poised genes, represent a type of specialized 

transcription factory (Bartlett et al., 2006). In these foci the recruitment of specific 

components would contribute to create a distinct transcriptional environment (Misteli,

2007), in order to rapidly and efficiently respond to specific extra-cellular signals. Whether 

inactive factories can be moved in a new position outside the CT and converted to active 

ones or whether the gene is repositioned to another factory following a transcription- 

inducing stimulus is still unknown. However, our results emphasize the presence of



dedicated nuclear sub-compartments and strengthen the emerging view of a non-random 

genome organization, possibly moulded by function (Marenduzzo et al., 2007; Misteli,

2007).

SUMMARY - II -

The main finding reported in this chapter is that a transcriptionally competent, but inactive, 

uPA gene is associated with the CTD-S5p of RNAP-II in specific nuclear structures. This 

seemingly exclude that the association of some genes with RNAP-II CTD-S5p occurs 

stochastically in the nucleus, supporting the idea that the interaction is restricted to specific 

sub-nuclear compartments and thus, suggesting the existence of specialized RNAP-II 

transcription factories.

The experiments presented in this chapter include unpublished data part of which (Figure 

4.4.B and C) have been obtained through a (collaboration with Ana Pombo’s group at MRC 

Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith 

Hospital Campus, London W12 ONN, United Kingdom.

114



RESULTS AND DISCUSSION -III-

Myosin VI affects RNAP-II transcriptional 

elongation. 

RESULTS -III-

5.1.1. Myosin VI associates with RNAP-II CTD-S2p on DAF-B and 

enhancer of the uPA gene in PC3 cells.

We have previously shown the presence of the non-conventional Myosin VI protein in the 

nucleus of HeLa cells and its co-immunoprecipitation with RNAP-II (Vreugde et al., 

2006). We decided to use the MN-ChIP assay in PC3 cells in order to test the association 

of Myosin VI with the regulatory elements of the uPA gene. Therefore we expanded the 

results of Figures 3.8 and 3.9 by performing immunoprecipitations with antibodies against 

Myosin VI in parallel with antibodies against the CTD-S5p and CTD-S2p forms of RNAP­

II. The imunoprecipitated DNA was analyzed using primer sets specific for frag.l, 

spanning the enhancer, and DAF-A and -B in the MP region of the uPA gene (see Figure 

5.1 A and Chapter 3). The results in Figure 5.IB show that frag.l and DAF-B amplicons
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were associated with RNAP-II CTD-S2p, but not with CTD-S5p, as expected (see Figures

3.8 and 3.11) and also with Myosin VI.

.<T ^& & "V N. ^
&  j 1 £  /  •O O ^  primer

' v1 , . ' . 1 f 22/R28

F26/R31

MNaseR-A

F7/R10
MNase R-B

Figure 5.1. Myosin VI associates with DAF-B and frag.l of uPA in PC3 cells.
ChlP-ready chromatin was digested for 50 minutes with MNase as in Figure 3.9 and 
subsequently immunoprecipitated with the antibodies indicated in the figure. The 
immunoprecipitated, purified genomic DNA was amplified with primer sets specific for 
DAF-A, -B and frag.l and fractionated on a 2% agarose gel. Input DNA was a 1:1000 
dilution of the DNA from the 50 minutes digestion time-point prior to 
immunoprecipitation. (A) Scheme of the primer sets used and of the amplified regions (not 
to scale). Symbols are as in Figures 3.8 and 3.11. (B) Amplifications of 
immunoprecipitated genomic DNA with antibodies to different forms of RNAP-II (CTD- 
S2p and CTD-S5p) and Myosin VI. Myosin VI is associated with DAF-B and frag.l 
together with the elongating form of RNAP II (CTD-S2p).
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5.1.2. Myosin VI associates with the promoters and intragenic regions of 

selected gene and modulates their transcription in PC3 cells.

We decided to determine if myosin VI specifically associates with the regulatory regions 

of genes. We performed ChIP assays using cross-linked chromatin from PC3 cells and 

specific antibodies for CTD-S2p RNAP-II, CTD-S5p RNAP-II and Myosin VI. Primers for 

the amplification of immunoprecipitated material were designed to include the promoter 

and intragenic sequences (coding region) of the chosen genes. As a negative control we 

used sets of primers that amplify an intergenic (non coding) region, upstream of the uPA 

gene. Quantitative PCR results (Figure 5.2) show that myosin VI is recruited to the 

promoter and intragenic regions of the uPA, LDLR and the p27BBP/eIF6 genes all of 

which are expressed in PC3 cells, but not to the promoter and intragenic region of 

p21WAFl/CIPl or to the intergenic region (Figure 5.2). Similarly, the CTD-S2p and CTD- 

S5p forms of RNAP-II are recruited to the promoters and intragenic regions of the selected 

genes, but not to the intergenic region (Figure 5.2), as expected. Interestingly, CTD-S2p 

and Myosin VI seemed to be relatively more enriched in intragenic as compared to 

promoter regions in all the genes tested (Figure 5.2). These results suggest a possible role 

for nuclear Myosin VI in the elongation phase of transcription. Next we decided to 

evaluate whether nuclear Myosin VI modulates the expression of the selected genes by 

monitoring their mRNA levels in Myosin Vl-depleted cells. Transient transfections of PC3 

cells with a plasmid expressing an antisense (AS) RNA for Myosin VI (Yoshida et al.,

2004) efficiently decrease Myosin VI protein levels (Figure 5.3A) and qRT-PCR shows 

that the mRNA levels of the tested genes (uPA, p27BBP/eIF6 and LDLR) also decrease 

(Figure 5.3B). Importantly, the mRNA levels of the p21WAFl/CIPl gene, the regulatory
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region of which is not associated with myosin VI, are not down-regulated by depletion of 

myosin VI (Figure 5.3B). Taken together, these data suggest that down-regulation of 

myosin VI affects the mRNA levels of selected RNAP-II target genes i n  v i v o .
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Figure 5.2. Myosin VI associates with promoters and intragenic regions of different 
genes.
ChIP using PC3 cross-linked chromatin was performed as described in material and 
methods using antibodies against CTD-S2p, CTD-S5p and Myosin VI as shown in the 
figure. qPCR amplification of immunoprecipitated material was performed with primers 
defining the promoter and the intragenic region, respectively, of the uPA, LDLR, p27/eIF6 
and p21 genes. Primers amplifying an intergenic region were also used as a negative
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control. Values plotted in the graphs correspond to the enrichment detected in the 
imunoprecipitated material relative to the input DNA for uPA (A), LDLR (B), p27/eIF6 
(C) and p21 (D) genes and the intragenic region (E) (mean ± SD from three independent 
experiments). The results show that Myosin VI can be found specifically associated with 
promoter and intragenic regions of expressed genes genes.

Empty vector

Myosin VI A.S.

Actin

uPA LDLR p27/elF6 p21WAF1

Figure 5.3. Myosin VI knock-down inhibits transcription of selected genes.
PC3 cells were transiently transfected with an empty vector (pIRES-EGFP) or with a 
vector earring a Myosin VI A.S. (pIRES-EGFP Myosin VI A.S. (Yoshida et al., 2004)). 
Part of the transfected cells was used to perform total proteins extraction (see material and 
methods). (A) Total protein extracts were resolved on a 5-15% gradient SDS-PAGE and 
transferred to PVDF membrane. The levels of endogenous Myosin VI were analyzed by 
immunoblotting with specific polyclonal antibodies and normalized to the actin signal. (B) 
The remaining transfected cells were used for total RNA extraction that was purified, retro- 
transcribed and a qRT PCR analysis was performed using primers specific for the selected 
genes (see Material and Methods). The values were normalized to the 18s rRNA and 
plotted in a graph (mean ± SD from three independent experiments). The results show that 
knock-down of Myosin VI affects mRNA levels of the genes with which it is associated.
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5.1.3. TPA treatment induces the nuclear accumulation of Myosin VI 

protein.

In order to investigate the response of MyosinVI to transcription-inducing signals, we 

moved to the inducible HepG2 cell system (see Chapter 4). We first studied the 

distribution of the endogenous protein by confocal microscopy in untreated and TPA- 

treated cells that were fixed and stained with specific antibodies. Figure 5.4A shows that 

MyosinVI is present in the nucleus of untreated cells with the typical speckled distribution 

(Compare with Figure 1A in (Vreugde et al., 2006). Transcriptional induction by TPA 

determines a massive increase of the protein in the nuclear compartment. Nuclear 

accumulation of MyosinVI following transcriptional induction was also observed by 

confocal microscopy after transiently transfecting HepG2 cells with a plasmid carrying a 

GFP-tagged full length MyosinVI (Aschenbrenner et al., 2003) and using anti-GFP 

antibodies (Figure 5.4B). A WB analysis of total, nuclear and cytoplasmic extracts of 

untreated and TPA-treated HepG2 cells (Figure 5.5) confirmed the nuclear accumulation of 

endogenous MyosinVI after transcriptional induction. Its increase in the nuclear 

compartment is not associated with an increase of the total protein amount, as shown by 

the comparable levels of MyosinVI in total extracts before and after TPA treatment. 

Moreover, a concomitant decrease of MyosinVI is detected in the cytoplasm after 

transcriptional induction. We conclude that transcriptional activation induces a relocation 

of MyosinVI to the nuclear compartment.
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Figure 5.4. TPA induction determines the nuclear accumulation of Myosin VI in 
HepG2 cells.
HepG2 cells untreated or treated with TPA (see Chapter 4 Figure 5.1) were fixed with 
para-formaldehyde, permeabilized and immuno-stained using antibodies specific for 
Myosin VI (see material and methods). DAPI staining was used to visualize the nuclei. (A) 
Confocal images show that TPA induction determines an accumulation of the protein in 
the nuclear compartment. To confirm this pattern HepG2 cells were transfected with a 
construct containing the full length Myosin VI tagged with GFP (Aschenbrenner et al., 
2003), transfection with GFP empty vector was used as a control. Cells were treated with 
or without TPA after transfection and immuno-stained using antibodies specific for GFP 
(as described above) to enhance GFP signal. (B) Confocal images show that GFP-Myosin 
VI is mostly cytoplasmic before TPA treatment and strongly accumulates in the nucleus 
after transcriptional induction. No such difference was observed in control cells transfected 
with the GFP (empty vector)
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Figure 5.5. TPA induces nuclear accumulation of Myosin VI in HepG2 cells.
Total, nuclear and cytoplasmic proteins were extracted from untreated and TPA treated 
HepG2 cells (see material and methods) resolved on a 5-15% gradient SDS-PAGE and 
transferred to PVDF membrane. The protein levels of Myosin VI were analyzed by 
immunoblotting with specific polyclonal antibodies. The signal obtained with an anti- 
Histone H2B or anti-actin was used for normalization. Densitometric analysis was carried 
for each lane and the normalized O.D. values for each band were plotted in the respective 
graphs (mean ± SD from three independent experiments).

5.1.4. Myosin VI is recruited to the promoter of induced genes after 

transcriptional activation.

TPA treatment transcriptionally induces several genes in HepG2 cells. To look for a 

connection between MyosinVI and transcriptional induction we examined the association 

of the promoters of the LDLR and uPA genes (Huang et al., 2004; Ibanez-Tall on et al., 

1999) with MyosinVI, RNAP-II CTD-S5p and RNAP-II CTD-S2p in untreated and TPA 

treated HepG2 cells by ChIP assay. Figure 5.6 shows that prior to TPA treatment 

chromatin immunoprecipitated with anti-Myosin VI antibodies is not enriched in the
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promoter sequences of the LDLR and uPA genes, as it is not enriched in the intergenic 

region used as a negative control. Following transcriptional induction we observed a clear 

recruitment of MyosinVI to the promoter of the genes, but not in the intergenic region 

(Figure 5.6). Transcriptional induction also affected the detection of the specific forms of 

RNAP-II. CTD-S5p was observed on the promoter of the LDLR and uPA genes before and 

after induction (Figure 5.6). As expected, we observed a clear PCR amplification signal of 

the genes promoter in CTD-S2p immunoprecipitated material after TPA treatment (Figure 

5.6) correlating with their transcriptional induction. In all cases the intergenic region 

displayed no signal for either form of RNAP-II. Our results indicate that MyosinVI is 

recruited to the promoters of TPA-induced genes and that its recruitment it is accompanied 

by the switch from a poised to an elongating RNAP-II form.
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Figure 5.6. Myosin VI associates with promoters of different genes upon TPA 
induction.
ChIP using cross-linked chromatin from HepG2 treated or not with TPA was performed as 
described in material and methods, using antibodies against CTD-S2p, CTD-S5p and 
Myosin VI, as reported in the figure. PCR amplification of immunoprecipitated material 
was performed with primers defining the promoter of the uPA and LDLR genes (Table II).
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Primers amplifying an intergenic region (Table II) upstream of the uPA promoter gene 
were also used as a negative control. Amplified material was visualized on 2% agarose, IX 
TAE gels by Et-Br staining. The results show that Myosin VI is specifically associated 
with the promoter region of the genes following transcriptional induction.

5.1.5. The down regulation of Myosin VI protein levels affects RNAP-II 

CTD-S2p levels.

We previously showed that down regulation of MyosinVI inhibits transcription (Vreugde 

et al., 2006) through a yet unidentified mechanism. Since the results of Figure 5.2 and 

Figure 5.6 show that transcriptional activity correlate with the association of CTD-S2p and 

Myosin VI with the promoters and intragenic regions of specific genes, we speculated that 

depletion of MyosinVI might prevent RNAP-II from proceeding to the elongating phase. 

Thus, we developed a HepG2 cell line stably expressing the AS RNA for MyosinVI 

previously used (see above). The plasmid containing the AS sequence is a pIRES-EGFP 

bicistronic vector, thus allowing us to distinguish untransfected vs. transfected cells. The 

presence of RNAP-II differentially phosphorylated forms (CTD-S5p and CTD-S2p) was 

analyzed in such cells before and after transcriptional induction by confocal microscopy 

using specific antibodies. We did not observe detectable differences in the CTD-S5p signal 

distribution by comparing AS MyosinVI-transfected untreated vs. treated cells with vector- 

transfected untreated vs. treated cells Figure 5.7. Strikingly, however, the CTD-S2p form 

shows substantial differences in the immunofluorescence signal in AS 

MyosinVI-transfected, untreated cells as compared to untreated cells transfected with the
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vector only. Figure 5.8 shows that AS Myosin VI expression causes a dramatic drop in the 

immunofluorescence signal for CTD-S2p.

Myosin VI AS -TPA Myosin VI AS +TPA

B
Vector -TPA Vector +TPA

Figure 5.7. Knock-down of Myosin VI does not affect CTD-S5p in HepG2 cells.
Pools of HepG2 cells stably transfected with a pIRES-EGFP plasmid either carrying a 
Myosin VI A.S. sequence (Yoshida et al., 2004), or not were either treated with TPA or not 
(see Chapter 4, Figure 4.1), fixed with para-formaldehyde, permeabilized and co-immuno- 
stained using antibodies specific for the poised form of RNAP-II (CTD-S5p) and GFP (see 
material and methods). DAPI staining was used to visualize the nuclei. Confocal images of 
Myosin VI A.S. transfected cells in (A) and Vector transfected cells in (B) show that no 
major differences can be observed between the two pools of cells with respect to CTD-S5p 
staining, meaning that knock-down of Myosin VI does not alter the distribution pattern of 
CTD-S5p.
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Figure 5.8. CTD-S2p is affected by knock-down of Myosin VI in HepG2 cells.
The pools of HepG2 cells stably used in the experiment shown in Figure 5.7 were co- 
immuno-stained with antibodies specific for the elongating form of RNAP-II (CTD-S2p) 
and GFP (see material and methods). DAPI staining was used to visualize the nuclei. 
Confocal images of Myosin VI A.S. transfected cells in (A) and Vector transfected cells in 
(B) show that a strong difference can be observed between the two pools of cells with 
respect to CTD-S2p staining. In fact in cells expressing Myosin VI A.S. the staining 
relative to CTD-S2p is dramatically dropped. Conversely, CTD-S2p staining is not overall 
altered in control vector transfected cells.
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Thus, AS MyosinVI-and vector-transfected cells were sorted in order to select those with 

the higher GFP (and consequently AS Myosin VI expression) levels and then used to 

perform a WB analysis of the levels of MyosinVI before and after transcriptional 

induction. In AS-transfected cells the decrease in endogenous MyosinVI levels was 

approximately 50% in untreated cells and around 80% in TPA-treated cells, as compared to 

untreated vs. treated cells stably transfected with the vector only (Figure 5.9A). The same 

extracts were also used to analyze CTD-S5p and CTD-S2p levels. Both AS MyosinVI- and 

vector-transfected cells showed equivalent levels of CTD-S5p before TPA treatment and a 

two fold of increase following TPA treatment (Figure 5.9B), as expected (see Figure 

4.4A). The levels of CTD-S2p in sorted cells, however, were lower in AS MyosinVI- than 

in vector-transfected cells prior to TPA induction (Figure 5.9C). Following induction the 

CTD-S2p levels in vector-transfected cells increased two fold, as compared with the 

untreated control, whereas we observed a 50% decrease in the CTD-S2p signal in AS- 

transfected cells, as compared to the untreated control (Figure 5.9C). Moreover, the 

decrease of CTD-S2p levels in AS-transfected, TPA-treated cells reached 75% when the 

comparison was done with vector-transfected TPA induced cells (Figure 5.9C). These 

results indicate that of Myosin VI specifically modulates the levels of RNAPII CTD-S2p 

and, thus, plays a role in transcription by affecting the elongation step.
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Figure 5.9. Myosin VI knock-down affects CTD-S2p of RNAP-II.
The pools of HepG2 cells previously used (Figures 5.7 and 5.8) were sorted to select cells 
with a high level of EGFP expression. Sorted cells were plated, treated or not with TPA (as 
described above) and total proteins were extracted (see material and methods). The extracts 
were fractionated on a 5-15% gradient SDS-PAGE and transferred to PVDF membrane. 
The levels of Myosin VI and specific RNAP-II phosporylated forms (CTD-S5p and CTD- 
S2p) were analyzed by immunoblotting with specific antibodies and Histone H2B was 
used for normalization (left panels A, B and C,). Densitometric analysis was carried for 
each lane and the normalized O.D. values for each band were plotted in a graph (right 
panels A, B and C) (mean ± SD from three independent experiments).
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5.1.6. Myosin VI affects transcriptional elongation.

To substantiate this finding and to analyze whether the effect on CTD-S2p raffected 

transcription we carried out in vivo run-on assays. Stably AS MyosinVI- and vector-only- 

transfected cells were permeabilized, incubated with BrUTP and its incorporation into 

nascent transcripts was detected by immunofluorescence with polyclonal anti-BrUTP 

antibodies. As expected, control cells (vector transfected) did not show any difference in 

the levels of nascent transcripts either before or after TPA treatment (Figure 5.1 OB). 

Notably, BrUTP incorporation was almost abolished in AS MyosinVI cells as compared to 

the relative control, indicating substantially decreased transcription (Figure 5.10A). This 

behavior parallels what observed with RNAP II CTD-S2p and further confirms the 

involvement of myosin VI in the elongation step of transcription.
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Figure 5.10. Myosin VI knock-down affects BrUTP incorporation in HepG2 cells.
Nascent transcripts were monitored by BrUTP incorporation (see material and methods) in 
the pools of HepG2 cells used in the experiments shows in Figures 5.7 and 5.8. After 
permebilization the cells were incubated in a buffer containing BrUTP, and after fixation, 
coimmuno-staining using antibodies specific for BrUTP and GFP was performed (see 
material and methods). DAPI staining was used to visualize nuclei. Confocal images of 
Myosin VI A.S. transfected cells in (A) and Vector transfected cells in (B) show a strong 
difference in BrUTP incorporation: in cells with a high expression level of the Myosin VI 
A.S. BrUTP staining was dramatically low. Conversely no major differences in the BrUTP 
pattern is observed in the control vector-transfected cells.
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DISCUSSION - in  -

Transcription of DNA requires large protein complexes. The synergistic action of the 

proteins that compose the basal transcriptional machinery together with transcription 

factors and chromatin remodeling proteins contribute to modulating this highly regulated 

process and determining correct gene expression. Recent work showed the presence of (3- 

actin, NMI and a number of related proteins in the nucleus (de Lanerolle et al., 2005). 

However, even though there is agreement on their implication in transcriptional regulation, 

their mechanism of action is still not known.

5.2.1. Motor protein in transcription, a growing family.

Despite the early proposal of an actin-based mechanism in gene transcription (Egly et al., 

1984) (Scheer et al., 1984), evidences for such a direct implication have only been 

gathered recently. A number of reports indicate that |3-actin associates with components of 

ATP-dependent chromatin remodeling complexes (Bettinger et al., 2004; Olave et al., 

2002), RNP particles (Percipalle et al., 2001)) and RNA polymerases in the eukaryotic cell 

nucleus and in vitro (Hofmann et al., 2004; Hu et al., 2004; Kukalev et al., 2005; 

Philimonenko et al., 2004), strengthening its implication as a crucial component of the 

transcription process. However, until now, only one Myosin (NMI) has been reported to be 

present in the mammalian nucleus (Pestic-Dragovich et al., 2000) and was shown to have 

an essential role in the RNAP-I dependent transcription of ribosomal RNA genes
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(Philimonenko et al., 2004). Here we report the presence in the nucleus of non- 

conventional Myosin VI. We find that in mammalian cells Myosin VI is associated with 

the DNA of active genes, where it modulates RNAP-II activity. These findings support the 

hypothesis that an acto-myosin-based mechanism is involved in the transcription of 

RNAP-II genes (Kukalev et al., 2005). Wile (3-actin is the only form of actin reported to be 

present in the nucleus and to interact with all three classes of polymerases, at least two 

myosins (NMI and Myosin VI) are found in the nucleus. An intriguing hypothesis is that 

myosin might confer target selectivity to the acto-myosin system.

5.2.2. Myosin VI response to extra-cellular stimuli.

A compelling question is whether motor proteins can modulate the overall transcriptional 

activity in response to extra-cellular signals. A feasible mechanism is that an external 

stimulus would activate the motor proteins that, in turn, will regulate specific subset of 

genes. Our results in an inducible cell system show that cells respond to a transcriptional 

inducing stimulus by relocating Myosin VI to the nuclear compartment. The nuclear 

accumulation of the protein is paralleled by its recruitment on the regulatory region of 

specifically induced genes. This suggests a direct involvement of Myosin in gene 

activation, but does not elucidate its mechanism of action. We have therefore further 

characterized the role of nuclear myosin VI in transcriptional regulation to clarify this 

issue.
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5.2.3. Molecular mechanism of action of Myosin VI.

Actin seems to be important in the process of transcription of the all tree RNAP 

(Philimonenko et al., 2004). However the way in which it exerts its action is not yet 

known. An emerging idea is that actin may act as a molecular platform for protein-protein 

interactions through a mechanism that requires ongoing RNA synthesis (Kukalev et al.,

2005) (Philimonenko et al., 2004). In fact abortive transcription-initiation assays showed 

that actin inhibits elongation, but does not affect the synthesis of the first nucleotides 

(Hofmann et al., 2004; Philimonenko et al., 2004). Myosin VI is also able to affect RNAP- 

II dependent transcription (Vreugde et al., 2006). Interestingly, ChIP assays show that 

Myosin VI associates with intragenic regions of active genes (Figure 5.2) suggesting that it 

may have a role in the mRNA elongation step. Experiments in the HepG2 inducible system 

also showed that Myosin VI is recruited on TPA-induced genes. Moreover the recruitment 

of Myosin VI coincides with the association of said genes with the elongating form of 

RNAP-II (CTD-S2p). Our results also show that the depletion of Myosin VI severely 

impairs the phosphorylation of RNAP-II-CTD at serine 2 (Figures 5.8 and 5.9C), but not at 

serine 5 (Figures 5.7 and 5.9B), determining a dramatic decrease in BrUTP incorporation 

(Figures 5.10). These data establish a connection between RNAP-II and Myosin VI 

suggesting its involvement in the elongation step. The molecular mechanism by which 

Myosin VI modulates CTD-S2p phosphorylation is presently under investigation. A 

feasible possibility is that it could contribute to the recruitment a series of cofactors such as 

CDK9, the specific kinase indicated to be involved in CTD-S2p phosphorylation.
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SUMMARY -III-

In this chapter we report the presence in the nucleus of non-conventional Myosin VI and 

show that is implicated in modulating the RNAP-II transcription process in PC3 cells. We 

also show that transcriptional induction of HepG2 cells triggers a massive recruitment of 

MyosinVI in the nucleus and its association with the elongating form of RNAP-II (CTD- 

S2p). We also provide evidence that MyosinVI depletion specifically affects the levels of 

RNAP-II CTD-S2p and decreases transcriptional activity. This suggests that MyosinVI 

responds to transcription-inducing stimuli by promoting RNAP-II elongation.

The experiments presented in this chapter includes a part of data (Figures 5.2 and 5.3) that 

have been published in: Vreugde S, Ferrai C. Miluzio A, Hauben E, Marchisio PC, Crippa 

MP, Bussi M, Biffo S. “Nuclear myosin VI enhances RNA polymerase II-dependent 

transcription”. Mol Cell. 2006 Sep l;23(5):749-755.
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RESULTS AND DISCUSSION -IV-

Recruitment of Myosin VI to specific target genes 

through its interaction with the transcription 

factor Prepl. 

RESULTS -IV

6.1.1. Myosin VI is present in a Prepl-containing complex.

The results in the Chapter 5 suggest that Myosin VI is involved in the transcriptional 

elongation step. However, no information is available on the mechanism by which Myosin 

VI is recruited to specific genes. Our laboratory has a long-time interest in Prepl, a 

homeodomain transcription factor essential for many biological functions such as, for 

instance, embryonic development (Berthelsen et al., 1998; Ferretti et al., 2006), 

hematopoietic lineage determination (Penkov et al., 2005) and apoptosis regulation 

(Deflorian et al., 2004). In order to study the Prepl interactome, a Prepl-containing 

complex was purified using the Tandem Affinity Purification (TAP) technique (Puig et al., 

2001). A C-terminally tagged Prepl was stably expressed in NIH 3T3 cells and a Prepl-
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containing complex was isolated, fractionated on SDS-PAGE and analyzed by mass 

spectrometry (Diaz et al., in Preparation), p-actin was among the proteins that copurified 

with Prepl and raised the question on whether also Myosin VI could be present in the 

complex. We thus analyzed the Prepl TAP associated material by immunoblotting with 

specific anti-Myosin VI antibodies. The results in Figure 6.1 show that RNAP-II and 

Myosin VI are present in the complex obtained from nuclear extracts. A weak band for 

both proteins could also be detected in cytoplasmic extracts. Although the presence of 

Myosin VI in the cytoplasm is expected RNAP-II in this fraction is possibly due to a 

nuclear contamination of cytoplasmic extracts.
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Figure 6.1. Immunoblotting analysis of the Prepl-associated proteins .
NIH-3T3 cells were infected either with a retovirus expressing Prepl-TAP fusion protein 
(TAP) or an empty vector (CTL) and the cytoplasmic (C) and nuclear (N) extracts purified 
by TAP (Diaz e t  a l . ,  in preparation). Fraction of inputs and eluates proteins were resolved 
on a 5-15% gradient SDS-PAGE and transferred on PVDF membrane. The presence of 
Prepl, Myosin VI and RNAP-II were analyzed by immunoblotting with specific 
antibodies.

6.1.2. Prepl and Myosin VI are recruited to the HoxB2 regulatory region 

upon transcriptional activation.

The human NT2-D1 cell line is known to differentiate in neuronal like cells upon RA

137



stimulation (Pleasure et al., 1992). RA-induced differentiation is accompanied by the 

transcriptional activation of the genes of the HoxB cluster (Simeone et al., 1990) in a 

sequential and time dependent manner, in which Prepl is required (Longobardi et al., In 

preparation). TSA treatment of transcriptionally induced NT2-D1 cells reverts the RA 

effect and, moreover, abolishes the binding of Prepl to its cognate sequence in the 

enhancer of the HoxB2 gene (Longobardi et al., in Preparation). ChIP assays carried out on 

chromatin from untreated, RA- and RA+TSA-treated cells confirmed that Prepl is 

recruited to the enhancer of HoxB2 after RA treatment, and is absent in RA+TSA treated 

cells in vivo (Longobardi et al., in Preparation). We decided to analyze the presence of 

Myosin VI on the enhancer of the HoxB2 gene in the same uninduced, transcriptionally 

induced (RA) and induction-reversed (RA+TSA) NT2-D1 cells. As shown in Figure 6.2 

the HoxB2 enhancer was not immunoprecipitated by MyosinVI antibodies under basal 

conditions, i.e. when the gene is not transcribed. On the other hand Myosin VI antibodies 

readily immunoprecipitated the HoxB2 enhancer upon RA induction, but Myosin VI was 

no longer associated to the regulatory region of HoxB2 when RA-induced NT2-D1 cells 

were treated with TSA Figure 6.2. An identical result was obtained with anti-RNAP-II 

CTD-S2p antibodies, which imunoprecipitated the HoxB2 enhancer only RA-treated NT2- 

D1 cells Figure 6.2. Interestingly, the poised form of RNAP-II (CTD-S5p) was associated 

with the HoxB2 enhancer in all conditions independently of transcriptional state of the 

gene. These results establish a link between Myosin VI, Prepl and the transcriptional 

induction of HoxB2 gene.
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Figure 6.2. . Myosin VI associates with the enhancer of HoxB2 when the gene is 
transcribed.
ChIP using cross-linked chromatin from NT2-D1, treated or not with TPA, was performed 
as described in material and methods using antibodies against CTD-S2p, CTD-S5p and 
Myosin VI, as shown in the Figure. PCR amplification of immunoprecipitated material was 
performed with primers spanning the enhancer of the HoxB2 gene (Table II). The 
amplified material was visualized on 2% agarose, IX TAE gels by Et-Br staining. The 
results show that Myosin VI is associated with the regulatory region of the HoxB2 gene 
upon RA transcriptional induction, whereas when the gene is not expressed (RA+TSA or 
untreated), no association was detected.

6.1.3. Myosin VI is required for the RA transcriptional activation of 

HoxB2.

We next evaluated whether nuclear Myosin VI regulates the expression of the HoxB2 gene 

by monitoring its mRNA levels in RA treated cells depleted of Myosin VI. First, we 

transiently transfected NT2-D1 cells with the AS Myosin VI construct (see chapter 5) or 

with the empty vector. Transfected cells were sorted in order to select those with a high 

level of EGFP expression (see Chapter 5). A western blot analysis shows that Myosin VI 

protein levels were efficiently down-regulated by AS RNA, as compared to control
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transfected cells (Figure 6.3A and B). Sorted cells were than treated, or not, with RA and 

total RNA extracted. qRT-PCR shows a significant decrease (approximately 50%) of 

HoxB2 mRNA levels in RA-induced, AS Myosin VI transfected cells (Figure 6.3C). The 

result suggests that Myosin VI is required for the RA induction of HoxB2 transcription.
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Figure 6.3. Myosin VI knock-down inhibits HoxB2 induction by RA treatment.
Transiently transfected NT2-D1 cells with an empty vector (pIRES-EGFP) or with a vector 
earring a Myosin VI A.S. (Yoshida et al., 2004)) were sorted to select transfected cells 
with a high level of EGFP expression. Part of the sorted cells was used to perform total 
proteins extraction (see material and methods). These extracts were resolved on a 5-15% 
gradient SDS-PAGE and transferred to PVDF membrane. (A) Myosin VI protein levels 
were analyzed by immunoblotting with specific polyclonal antibody and Histone H2B was 
used for normalization. (B) Densitometric analysis was carried out for each lane and the 
normalized O.D. values for each band were plotted in the graph shown. (C) The remainer 
of the sorted cells were not treated or treated with RA. Total RNA was purified, retro- 
transcribed and a qRT PCR analysis was performed using primers specific for HoxB2 
mRNA (see Material and Methods). The data were normalized to the endogenous [3-actin 
mRNA and plotted in a graph (mean ± SD from two independent PCRs done in triplicate).
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6.1.4. Recruitment of Myosin VI in the nuclear compartment by RA 

treatment is reverted by TSA in NT2-D1 cells.

Previous results in HepG2 cells showed that a specific transcription-inducing stimulus 

determine the recruitment of Myosin VI from the cytoplasmic to the nuclear compartment 

(see chapter 5 and Figures 5.4 and 5.5). We decided to perform immunofluorence 

experiments by confocal microscopy on NT2-D1 cells in order to check whether RA or 

RA+TSA treatments affect the nucleo-cytoplasmic localization of Myosin VI. Figure 6.4A 

shows that MyosinVI is present in the nucleus of untreated cells with the typical speckled 

distribution (Vreugde et al., 2006), whereas RA-treated cells display a very strong nuclear 

staining. When NT2-D1 cells, were treated with TSA in the presence of RA, the nuclear 

accumulation of Myosin VI was reverted and the protein reacquired the cytoplasmic 

distribution observed in untreated cells (Figure 6.4A). Immunoblot analysis of total 

extracts of NT2-D1 cells shows that the amount of the protein does not change in all the 

conditions used (Figure 6.4B). Nevertheless the analysis of nuclear extracts by western 

blotting shows that RA-treated cells have a higher Myosin VI content than untreated or 

RA+TSA-treated cells (Figure 6.4B). These results therefore indicate that RA induces the 

nuclear accumulation of Myosin VI and that this re-localization is reverted by TSA 

treatment.
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Figure 6.4. Different stimuli affects nuclear /cytoplasmic distribution of Myosin VI in 
NT2-D1 cells.
NT2-D1 cells untreated, treated with RA or with RA+TSA (see material and methods) 
were fixed with para-formaldehyde, permeabilized and immuno-stained using antibodies 
specific for Myosin VI (see material and methods). DAPI staining was used to visualize 
nuclei. (A) Confocal images showing the cellular distribution of Myosin VI show that in 
untreated cells the protein is mostly cytoplasmic. A certain amount of Myosin VI can be 
found also in the nuclear compartment where is distributed throughout the nucleoplasm in 
discrete foci. Treatment with RA determines a nuclear accumulation of Myosin VI whereas 
TSA treatment in the presence of RA restores the cytoplasmic distribution of the protein. 
(B) and (C) To confirm the microscopy results total and nuclear extracts were prepared 
from NT2-D1 cells subjected to the same treatments as above (see material and methods) 
resolved on a 5-15% gradient SDS-PAGE and transferred to PVDF membrane. Myosin VI 
protein levels were analyzed by immunoblotting with specific polyclonal antibodies. Anti- 
actin antibodies were used to normalize total protein extracts whereas nuclear extracts were 
normalized with an anti-Histone H2B.
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6.1.5. The absence of Prepl prevents the binding of Myosin VI to the 

regulatory regions of the transcription factor target genes.

Prepl and Myosin VI are both associated with the enhancer of the HoxB2 gene after RA- 

induced transcriptional activation (Longobardi et al., in preparation and Figure 6.2). On the 

other hand the lack of Prepl binding upon TSA treatment (Longobardi et al., in 

preparation) is accompanied by the loss of Myosin VI from the HoxB2 enhancer. These 

results suggest that Prepl may be responsible for the recruitment of Myosin VI to the 

regulatory region of HoxB2. However, the results of Figure 6.4 do not clarify whether the 

absence of Myosin VI is the consequence of the loss of Prepl binding or an independent 

event, such as the exit of Myosin VI from the nucleus. It has been recently found that the 

BCL-X and p53 genes are targets of Prepl (see Introduction) and results of ChIP 

experiments carried out on MEF from WT and Prepl1/1 (hypomorphic) mice showed the 

association of Prepl with the regulatory sequences of these genes in the former but not in 

the latter (Micali et al., in preparation). An immunoblot analysis shows that Myosin VI 

endogenous protein levels do not vary between WT and Prepl''' MEF (Figure 6.5A). In 

order to understand if Prepl is required for Myosin VI recruitment on its target genes we 

repeated the ChIP assay using antibodies against Prepl and Myosin VI on cross-linked 

chromatin from WT and Prepl1'1 MEF and immunoprecipitated DNA was subjected to 

quantitative PCR. The results show that Myosin VI associates with the regulatory regions 

of the selected genes on chromatin from WT MEF, while no association of the protein with 

such sequences was found in immunoprecipitates from Prepl1'' MEF chromatin. These
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results suggest that Prepl is required for the recruitment of Myosin VI to the regulatory 

region of specific genes.
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Figure 6.5. Prepl is required to recruit Myosin VI on the regulatory regions of 
specific genes.
(A) Total proteins were extracted from WT and Prepl 1/1 MEF (see material and methods) 
resolved on a 5-15% gradient SDS-PAGE and transferred to PVDF membrane. Myosin VI 
protein levels were analyzed by immunoblotting with specific polyclonal antibodies. 
Histone H2B was used for normalization. Densitometric analysis was carried for each lane 
and the normalized O.D. values for each band were plotted in the graph. (B) and (C) ChIP 
was performed as described in materials and methods. Cross-linked chromatin from WT 
and Prepl 1/1 MEF was immunoprecipitated with antibody against Prepl, Myosin VI and 
uPAR as unrelated antibody (see Materials and Methods). qRT PCR amplification was 
performed using specific primers for the regulatory regions of the BCL-X and p53 genes. 
qPCR results were normalized to input DNA values. The results obtained from unrelated 
(uPAR) antibodies immunoprecipitated material was subtracted from the results obtained 
for BCL-X and p53 genes and the final numbers were plotted.
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DISCUSSION -IV-

The data presented in Chapter 5 suggest that Myosin VI has a crucial role in modulating 

the transcriptional activity of RNAP-II by promoting its progression into the elongation 

phase. However, no information is available on how Myosin VI is recruited to target genes. 

We hypothesized that the transcription factor Prepl might be involved in this process. We 

have approached this issue by using the NT2-D1 cell system in which RA-treatment 

induces the expression of the HoxB2 gene through the recruitment of Prepl and in which 

the effect is reverted by TSA treatment.

6.2.1. Myosin VI is necessary to RA induction of HoxB2 gene.

Transcription factors modulate transcription by binding to specific DNA motifs localized 

in the regulatory regions of their target genes. The Prepl homeodomain transcription factor 

is essential for embryonic development (Berthelsen et al., 1998; Ferretti et al., 2006) and is 

required for the expression of the HoxB gene cluster (Ferretti et al., 2005; Ferretti et al., 

2000; Jacobs et al., 1999; Ryoo et al., 1999). Here we provide evidences that the binding of 

Prepl and Myosin VI to the enhancer of the HoxB2 gene correlates with its expression. 

Myosin VI depletion with a specific AS RNA shows that the reduction of protein levels
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correlates with a decrease of HoxB2 mRNA levels following RA treatment of NT2-D1 

cells. These data indicate that Myosin VI is required for the transcriptional induction of the 

HoxB2 gene by RA.

6.2.2. Myosin VI promotes RNAP-II entry in the elongation phase.

In line with what previously observed in HepG2 cells ChIP assays using antibodies against 

the phosphorylated forms of RNAP-II reveal a clear association of the CTD-S2p with the 

enhancer of HoxB2 only after RA treatment of NT2-D1 cells. In these conditions also 

Myosin VI and Prepl are associated with the regulatory element. Conversely the poised 

form RNAP-II (CTD-S5p) associates with the HoxB2 enhancer in untreated cells or after 

RA+TSA treatment, when the gene is not transcribed or is reverted to a transcriptionally 

inactive state. This indicates that RNAP-II is always associated with the HoxB2 enhancer, 

but transcription can proceed only when RA induces the RNAP-II switch to the CTD-S2p 

form. Moreover, these data confirm, in a different experimental system, that the presence 

of Myosin VI correlates with the association of RNAP-II CTD-S2p with the regulatory 

element of transcriptionally induced genes, strengthening the suggestion that Myosin VI is 

involved in promoting the access of RNAP-II to the elongation step. In light of what we 

reported in Chapter 4 the observation that the HoxB2 enhancer associates with the poised 

form of RNAP-II in control cells is intriguing. Albeit we have no evidence showing the 

physical association of the HoxB2 gene with specific factories, the ChIP data suggest that 

the gene might be located in a poised factory.
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6.2.3. Stimulus-dependent behaviour of Myosin VI.

Treatment of NT2-D1 cells with RA determines a relocation of Myosin VI to the nuclear 

compartment, similarly to what previously observed in TPA treated HepG2 cells. This 

effect appears to be stimulus-specific, since TSA treatment fails to generate the same result 

and actually restore the protein distribution observed in untreated cells. These evidences 

raise questions on how different stimuli can affect Myosin VI behaviour: Which signaling 

cascade affects Myosin VI behavior? How can different stimuli, conveyed through Myosin 

VI affect the activation of different gene programs? How does Myosin VI associate with 

the regulatory region of target genes in order to favor their activation in response to 

specific stimuli?

6.2.4. Prepl recruits Myosin VI to specific target genes.

A feasible scenario is the interaction of Myosin VI with transcription factors. The 

combinatorial action of different transcription factors confers position and temporal 

specificity to gene expression programs in an organism. Here we show that Myosin VI is 

part of a Prepl complex. Both Prepl and Myosin VI are associated with the enhancer of a 

transcriptionally induced HoxB2 gene and are absent after transcriptional inhibition by 

TSA. However, we still do not know if the recruitment of Myosin VI to the HoxB2 

enhancer is a Prepl mediated or an independent event. An indication that such recruitment 

may be a Prepl-mediated event comes from experiments in Prepllli MEF, showing that the 

absence of Prepl prevents Myosin VI recruitment to the regulatory region of Prepl-target
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genes. This finding supports the idea that a transcription factor may target Myosin VI to 

the regulatory region of a gene. Whether Myosin Vl/Prepl recruitment occurs through a 

direct interaction or is mediated by other proteins is presently under investigation.

6.2.5. Nucleus and motor proteins: Could an active nuclear transport be 

required for transcriptional regulation?

Chromosomes have been shown to have a spatially defined distribution in the interphase 

nucleus, each occupying a discrete volume defined as CT (Cremer and Cremer, 2001; 

Parada and Misteli, 2002). It is known that transcription of a specific gene and its position 

relatively to the CT is an important feature in modulating expression. FISH experiments 

suggest that, at least for some genes, there is a correlation between transcriptional activity 

and their localization outside the CTs, with the chromatin fiber containing the transcribed 

genes looping out of the CT (Chambeyron and Bickmore, 2004a; Mahy et al., 2002). 

Moreover, gene activation may also lead to the relocation of a gene locus from the 

periphery to the inner nuclear space (Kosak et al., 2002; Zink et al., 2004). Altogether 

these observations suggest a model in which some genes change their nuclear radial 

position following an activating stimulus (Misteli, 2004). In particular the HoxB cluster 

moves from the chromosomal territory to an extra-territorial location (Chambeyron et al., 

2005). While it is clear that genes can change their positions, to date no mechanisms of 

active nuclear transport has been shown (Gorski et al., 2006). It is tempting to hypothesize 

the existence of a nucleoskeletal transport and/or gene localization mechanism involving 

nuclear motor proteins like Myosin VI. No information is available to date on the
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reversibility of the processes by which genes protrude out of the CT. However, it is 

possible that different yet unidentified motor proteins, acting in different orientations, may 

be required for the displacement and relocation of chromosomal segments. The results 

shown in Chapter 5 together with those of this Chapter indicate that specific stimuli 

determine a dramatic redistribution of Myosin VI to the nuclear compartment. On the other 

hand our data, obtained in different cellular systems, suggest that the functional relevance 

of Myosin VI is linked to promoting RNAP-II elongation. However, the involvement of 

motor proteins in relocating genes in the nuclear space has yet to be shown.

SUMMARY -IV-

In this chapter we show that Myosin VI associates with a Prepl complex and that Prepl is 

implicated in the recruitment of Myosin VI to specific target genes. Moreover we provide 

evidences that Myosin VI selectively responds to specific extra-cellular signals. This 

suggests that different stimuli can converge onto Myosin VI, which may then modulate 

selected arrays of genes by the concerted interaction with specific transcription factors.

The experiments presented in this chapter include unpublished data part of which have 

been obtained in collaboration with other members of my laboratory. In particular: the
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material used for the immunoblot experiments shown in Figure 6.1 has been obtained from 

a Prepl TAP immunoprecipitation performed by Dr. Victor Manuel Diaz. The material 

used in the experiment shown in Figure 6.5 was obtained from MEF prepared by Dr. 

Nicola Micali.
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Appendix A

List of abbreviations^

Cromosome Territories (CT)

RNA Polymerase (RNAP)

urokinase Plasminogen Activator (uPA)

Retinoic Acid (RA)

Tri coStatin A (TSA)

Tetradecanoyl Phorbol Acetate (TPA)

Chromatin Immuno Precipitation (ChIP)

Polymerase Chain Reaction (PCR)

Tandem Affinity Purification (TAP)

Mouse Embryo Fibroblasts (MEF)

Fluorescence In Situ Hybridization (FISH)

Minimal Promoter (MP)

Intervening Sequence (IVS)

Carboxy Terminal Domain (CTD)

Distinct Amplification Fragment (DAF)

Micrococcal Nuclease (MNase)

MNase digestion coupled with ChIP (MN-ChIP)

Locus Control m Regions (LCRs)

RNA Tagging and Recovery of Associated Proteins (RNA TRAP)

Chromosomal Conformation Capture (3C)
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Pro Myelocytic Leukemia

CT- Inter-Chromosome-domains

Inter-chromatin Compartment

Electron Spectroscopic Imaging

Nucleolar Organization Region

Pre Initiation Complex

Fluorescence Recovery After Photobleaching

Fluorescence Loss In Photobleaching

Nuclear Myosin I

Heterogeneous nuclear RiboNuclear Particles 

Transcription Initiation Factor-IA 

Helix-Loop-Helix 

Helix-Turn-Helix

Electrophoretic Mobility Shift Assay 

Activator Responsive Element 

Dulbecco’s Modified Eagle’s Medium 

Fetal Bovine Serum

SDS PolyAcrylamide Gel Electrophoresis 

Phosphate Buffered Saline 

Cross-linked sonicated chromatin

(PML)

(CT-IC)

(IC)

(ESI)

(NOR)

(PIC)

(FRAP)

(FLIP)

(NMI)

(hnRNPs)

(TIF-IA)

(HLH)

(HTH)

(EMSA)

(ARE)

(DMEM)

(FBS)

(SDS-PAGE)

(PBS)

(ChIP ready chromatin)
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