100 research outputs found

    Cohort-profile: Household transmission of SARS-CoV-2 in a low-resource community in Rio de Janeiro, Brazil.

    Get PDF
    PURPOSE: To better understand the household transmission of SARS-COV-2 in a low-resource community in Rio de Janeiro during the COVID-19 pandemic (2020-2022). PARTICIPANTS: This is an open prospective cohort study of children ≤12 years old and their household contacts. During home visits over 24 months, we collected data on sociodemographic characteristics, behavioural data, clinical manifestations of SARS-CoV-2, vaccination status, SARS-CoV-2 (reverse transcription-polymerase chain reaction) RT-PCR and anti-S antibody tests. Among adults, the majority of participants were women (62%). FINDINGS TO DATE: We enrolled 845 families from May 2020 to May 2022. The median number of residents per household was four. The median household density, defined as the number of persons per room, was 0.95. The risk of SARS-CoV-2 occurrence was higher in households with a high number of persons per room. Children were not the principal source of SARS-CoV-2 infections in their households during the first wave of the pandemic. FUTURE PLANS: Future studies will investigate cellular and humoral immune responses to locally circulating SARS-CoV-2 variants, which is relevant for the design of vaccines, antivirals and monoclonal antibodies. We will also engage in outreach to encourage vaccination as a means of limiting the transmission of novel SARS-CoV-2 variants and other emerging pathogens

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
    • …
    corecore