25 research outputs found

    Comparison of Aerobic Scope for Metabolic Activity in Aquatic Ectotherms With Temperature Related Metabolic Stimulation: A Novel Approach for Aerobic Power Budget

    Get PDF
    Considering that swim-flume or chasing methods fail in the estimation of maximum metabolic rate and in the estimation of Aerobic Scope (AS) of sedentary or sluggish aquatic ectotherms, we propose a novel conceptual approach in which high metabolic rates can be obtained through stimulation of organism metabolic activity using high and low non-lethal temperatures that induce high (HMR) and low metabolic rates (LMR), This method was defined as TIMR: Temperature Induced Metabolic Rate, designed to obtain an aerobic power budget based on temperature-induced metabolic scope which may mirror thermal metabolic scope (TMS = HMR—LMR). Prior to use, the researcher should know the critical thermal maximum (CT max) and minimum (CT min) of animals, and calculate temperature TIMR max (at temperatures −5–10% below CT max) and TIMR min (at temperatures +5–10% above CT min), or choose a high and low non-lethal temperature that provoke a higher and lower metabolic rate than observed in routine conditions. Two sets of experiments were carried out. The first compared swim-flume open respirometry and the TIMR protocol using Centropomus undecimalis (snook), an endurance swimmer, acclimated at different temperatures. Results showed that independent of the method used and of the magnitude of the metabolic response, a similar relationship between maximum metabolic budget and acclimation temperature was observed, demonstrating that the TIMR method allows the identification of TMS. The second evaluated the effect of acclimation temperature in snook, semi-sedentary yellow tail (Ocyurus chrysurus), and sedentary clownfish (Amphiprion ocellaris), using TIMR and the chasing method. Both methods produced similar maximum metabolic rates in snook and yellowtail fish, but strong differences became visible in clownfish. In clownfish, the TIMR method led to a significantly higher TMS than the chasing method indicating that chasing may not fully exploit the aerobic power budget in sedentary species. Thus, the TIMR method provides an alternative way to estimate the difference between high and low metabolic activity under different acclimation conditions that, although not equivalent to AS may allow the standardized estimation of TMS that is relevant for sedentary species where measurement of AS via maximal swimming is inappropriate

    Comparison of aerobic scope for metabolic activity in aquatic ectotherms with temperature related metabolic stimulation: a novel approach for aerobic power budget

    Get PDF
    Considering that swim-flume or chasing methods fail in the estimation of maximum metabolic rate and in the estimation of Aerobic Scope (AS) of sedentary or sluggish aquatic ectotherms, we propose a novel conceptual approach in which high metabolic rates can be obtained through stimulation of organism metabolic activity using high and low non-lethal temperatures that induce high (HMR) and low metabolic rates (LMR), This method was defined as TIMR: Temperature Induced Metabolic Rate, designed to obtain an aerobic power budget based on temperature-induced metabolic scope which may mirror thermal metabolic scope (TMS = HMR—LMR). Prior to use, the researcher should know the critical thermal maximum (CT max) and minimum (CT min) of animals, and calculate temperature TIMR max (at temperatures −5–10% below CT max) and TIMR min (at temperatures +5–10% above CT min), or choose a high and low non-lethal temperature that provoke a higher and lower metabolic rate than observed in routine conditions. Two sets of experiments were carried out. The first compared swim-flume open respirometry and the TIMR protocol using Centropomus undecimalis (snook), an endurance swimmer, acclimated at different temperatures. Results showed that independent of the method used and of the magnitude of the metabolic response, a similar relationship between maximum metabolic budget and acclimation temperature was observed, demonstrating that the TIMR method allows the identification of TMS. The second evaluated the effect of acclimation temperature in snook, semi-sedentary yellow tail (Ocyurus chrysurus), and sedentary clownfish (Amphiprion ocellaris), using TIMR and the chasing method. Both methods produced similar maximum metabolic rates in snook and yellowtail fish, but strong differences became visible in clownfish. In clownfish, the TIMR method led to a significantly higher TMS than the chasing method indicating that chasing may not fully exploit the aerobic power budget in sedentary species. Thus, the TIMR method provides an alternative way to estimate the difference between high and low metabolic activity under different acclimation conditions that, although not equivalent to AS may allow the standardized estimation of TMS that is relevant for sedentary species where measurement of AS via maximal swimming is inappropriate

    Cumulative signal transmission in nonlinear reaction-diffusion networks

    Get PDF
    Quantifying signal transmission in biochemical systems is key to uncover the mechanisms that cells use to control their responses to environmental stimuli. In this work we use the time-integral of chemical species as a measure of a network’s ability to cumulatively transmit signals encoded in spatiotemporal concentrations. We identify a class of nonlinear reaction-diffusion networks in which the time-integrals of some species can be computed analytically. The derived time-integrals do not require knowledge of the solution of the reaction-diffusion equation, and we provide a simple graphical test to check if a given network belongs to the proposed class. The formulae for the time-integrals reveal how the kinetic parameters shape signal transmission in a network under spatiotemporal stimuli. We use these to show that a canonical complex-formation mechanism behaves as a spatial low-pass filter, the bandwidth of which is inversely proportional to the diffusion length of the ligand

    Análisis Dinámico de la Muerte Celular Apoptosis

    No full text
    Análisis Dinámico de la Muerte Celular Apoptosi

    Exact Probability Distributions of Selected Species in Stochastic Chemical Reaction Networks

    Get PDF
    Chemical reactions are discrete, stochastic events. As such, the species’ molecular numbers can be described by an associated master equation. However, handling such an equation may become difficult due to the large size of reaction networks. A commonly used approach to forecast the behaviour of reaction networks is to perform computational simulations of such systems and analyse their outcome statistically. This approach, however, might require high computational costs to provide accurate results. In this paper we opt for an analytical approach to obtain the time-dependent solution of the Chemical Master Equation for selected species in a general reaction network. When the reaction networks are composed exclusively of zeroth and first-order reactions, this analytical approach significantly alleviates the computational burden required by simulation-based methods. By building upon these analytical solutions, we analyse a general monomolecular reaction network with an arbitrary number of species to obtain the exact marginal probability distribution for selected species. Additionally, we study two particular topologies of monomolecular reaction networks, namely (i) an unbranched chain of monomolecular reactions with and without synthesis and degradation reactions and (ii) a circular chain of monomolecular reactions. We illustrate our methodology and alternative ways to use it for non-linear systems by analysing a protein autoactivation mechanism. Later, we compare the computational load required for the implementation of our results and a pure computational approach to analyse an unbranched chain of monomolecular reactions. Finally, we study calcium ions gates in the sarco/endoplasmic reticulum mediated by ryanodine receptors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11538-014-9985-z) contains supplementary material, which is available to authorized users

    Marginal probability distributions for the reaction network (28).

    No full text
    <p>Probability of having a molecular count of <i>P</i> within a certain range, as obtained with the reduced order model. The parameters used for simulation are , 100 initial molecules of substrate, 100 initial molecules of enzyme, and zero initial molecules for the remaining species.</p

    Reactions and their propensity function.

    No full text
    <p>The symbol denotes the number of molecules of the species . The symbol denotes the propensity of reaction .</p

    Computational time overhead of the numerical solution of CME and SSA with respect to numerical solution of reduced model.

    No full text
    <p>Computational time overhead, as given by (34), required to solve the full CME (diamonds) and to perform 10<sup>3</sup> SSA runs (squares) as compared to the computational time required in seconds to simulate the reduced order model, as the initial number of molecules for <i>E</i> and <i>S</i> vary from 5 to 100. The parameters values used for simulation are identical to those of <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0103521#pone-0103521-g003" target="_blank">Figure 3</a>.</p

    Computational time assessment of the FSP method vs balanced reduction approach.

    No full text
    <p>Comparison of the computational time required to obtain the reduced order model via balanced realisation (filled circle) and to obtain the approximative model via the FSP method (empty markers), with different, predefined error bounds (). The reaction network analysed is (28). The parameters used for simulation are those of <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0103521#pone-0103521-g003" target="_blank">Figure 3</a>. Panels , , and consider 10, 30, and 50 initial molecules for <i>E</i> and <i>S</i> and zero molecules for the rest of the species, respectively.</p
    corecore