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Abstract Chemical reactions are discrete, stochastic events. As such, the species’
molecular numbers can be described by an associated master equation. However,
handling such an equation may become difficult due to the large size of reaction net-
works. A commonly used approach to forecast the behaviour of reaction networks is
to perform computational simulations of such systems and analyse their outcome sta-
tistically. This approach, however, might require high computational costs to provide
accurate results. In this paper we opt for an analytical approach to obtain the time-
dependent solution of the Chemical Master Equation for selected species in a general
reaction network. When the reaction networks are composed exclusively of zeroth and
first-order reactions, this analytical approach significantly alleviates the computational
burden required by simulation-based methods. By building upon these analytical solu-
tions, we analyse a general monomolecular reaction network with an arbitrary number
of species to obtain the exact marginal probability distribution for selected species.
Additionally, we study two particular topologies of monomolecular reaction networks,
namely (i) an unbranched chain of monomolecular reactions with and without syn-
thesis and degradation reactions and (ii) a circular chain of monomolecular reactions.
We illustrate our methodology and alternative ways to use it for non-linear systems by
analysing a protein autoactivation mechanism. Later, we compare the computational
load required for the implementation of our results and a pure computational approach
to analyse an unbranched chain of monomolecular reactions. Finally, we study calcium
ions gates in the sarco/endoplasmic reticulum mediated by ryanodine receptors.
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1 Introduction

Chemical reactions are random events. Although this might suggest an uncontrolled
behaviour, difficult to analyse or predict, they are the basis of highly organised phe-
nomena happening in living systems. Despite this relevance, there are still many gaps
in understanding the principles governing the regulatory systems that deal with such
randomness. Thus, a means for forecasting the behaviour of stochastic reaction net-
works in an efficient, yet accurate manner is essential to understand cellular regulatory
mechanisms.

Stochastic systems can reproduce chemical reaction dynamics (Gardiner et al. 1985;
Iglesias and Ingalls 2010). However, the large number of reactions in the network and
their nonlinear nature hinder an analytical treatment of the corresponding stochas-
tic models. To overcome this difficulty, it is common practice to handle such models
numerically. The Stochastic Simulation Algorithm, SSA, (Gillespie 1977; Kurtz 1972)
is a widely used computational approach to obtain time courses of species’ molecular
numbers. We refer the interested reader to Gillespie (2007), Barrio et al. (2010) and
Erban et al. (2007) for a survey of simulation methods for stochastic reaction net-
works. By performing a statistical analysis on the trajectories obtained by simulation,
one can identify properties of the studied reaction network. One of the most insightful
properties is the time-dependent probability density function that describes the proba-
bility of having a specific number of molecules for each species. However, the number
of simulations required for this computational approach might become prohibitively
large due to the size, type of reactions, and kinetic parameters of the reaction network.

The chemical master equation (CME) is a set of ordinary differential equations
associated to a continuous-time, discrete-state Markov Chain. This Markov Chain
describes the temporal evolution of the probability density function of having certain
species’ molecular counts. Although an analytical treatment of the CME is in general
challenging, there are classes of reaction networks for which closed-form analytical
solutions are available. Some members of these classes are reaction networks that
have only one reactant per reaction, denoted as monomolecular or first-order reaction
networks. Jahnke and Huisinga (2007) derived an analytical solution for the CME
for such systems, whereas Gadgil et al. (2005) obtained expressions for the first two
moments of the probability density function arising from associated CMEs. In turn, Lee
and Kim (2012) obtained the analytical solution for the CME of classes of nonlinear
reactions, by casting the state transition as a Markov Chain that resembles that of a
monomolecular reaction network.

In this paper, we obtain closed-form expressions for the time-dependent solution
of the CME associated to general stochastic reaction networks. We note that, as the
numbers of molecules and reactions increase, the order of the CME explodes; thereby,
hindering the applicability of this analytical treatment. Later, by availing of the results
in Jahnke and Huisinga (2007), we obtain an exact analytical solution of the CME
for selected species in an arbitrarily large monomolecular reaction network. For these
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monomolecular reaction networks, the order of the ODEs to solve is those of the num-
ber of species in the reaction network, in contrast to the number of states of the CME in
a general reaction network. In addition to considering general monomolecular reaction
networks, we focus on two different topologies with an arbitrary number of species:
(i) an unbranched chain of monomolecular reactions with and without synthesis and
degradation of the species and (ii) a chain of unbranched monomolecular reactions in
which the last species also interacts with the first species, therefore, creating a ring of
reactions.

It should be noted that Leier et al. (2014) and Barrio et al. (2013) tackled the prob-
lem of exactly reducing general monomolecular reaction networks and unbranched
monomolecular reaction networks, respectively, into one monomolecular reaction.
This reduced representation is characterised by a constant reaction rate and a time
delay sampled from a defined distribution. In addition to obtaining a simpler rep-
resentation, the authors achieved savings on the computational load required for the
simulation of the reduced model. However, we note that such approaches use the delay
stochastic simulation algorithm (DSSA, see Cai 2007; Barrio et al. 2006, 2010, for
instance). In contrast, our methodology obtains an exact, analytical solution of the
CME of the reaction network studied in Barrio et al. (2013) and additional topologies,
hence avoiding the computational burden of the (D)SSA.

To exemplify the applicability of our results, we analyse a protein autoactivation
mechanism with nonlinear reaction propensities. Later, we compare the computational
time required to obtain the solution of the CME of an unbranched, monomolecular
reaction network via our methodology and the implementation of four simulation algo-
rithms: (i) the Stochastic Simulation Algorithm, SSA, (Gillespie 1977; Kurtz 1972) (ii)
the Next Reaction Method, NRM, (Gibson and Bruck 2000), (iii) Optimized Direct
Method, ODM (Cao et al. 2004), and (iv) a hybrid stochastic simulation algorithm
(Liu et al. 2012). In such an example, we note that the computational time required by
our approach is similar to a few runs of the SSA. To conclude, we also analyse a ring
of monomolecular reactions inspired by a model of ion gating mediated by ryanodine
receptors (Lanner et al. 2010; Keener 2009).

2 Chemical Reaction Networks

A group of n species Si interacting via m reactions may be represented by

n∑

i=1

αi j Si
v j
�

n∑

i=1

βi j Si . (1)

Here v j denotes the rate of the j th reaction and αi j and βi j are known as the stoichio-
metric coefficients. In matrix form, a mathematical model of (1) is

d

dt
c(t) = Nv(c(t)), c(0) = c0. (2)

Here c(t) : R+ → R
n+ is a column vector that contains the species’ concentration in

(1). In turn, the j th entry of v(c(t)) : R+ × R
n+ → R

m is the reaction rate of the j th
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reaction, v j . When a reaction has more than one reactant, the rate v j is a nonlinear
function, which can be modelled by the Mass Action Law (Chellaboina et al. 2009), for
instance. With the definitions above, the mass action reaction rate of the j th reaction
in (1) has the form

v j (c(t)) = δ j

n∏

i=1

c
αi j
i (t),

where δ j is a parameter that depends on the nature of the reaction taking place. Please,
refer to Table 1 for the reaction rates of the most common reactions. The link between
the reaction rates to the change of the species’ concentration is the stoichiometric
matrix N ∈ N

n×m , whose i j th entry is defined as

ni j := βi j − αi j . (3)

When using any approach based on a continuous representation of c(t), a large num-
ber of molecules within a well-stirred spatial domain are assumed. This assumption,
however, is not appropriate for modelling all biochemical systems. In the following
section, we present a stochastic formulation of the dynamics of the species’ molecular
number in the reaction network (1).

2.1 Stochastic Formulation

When the species’ molecular number in a reaction network is low, a continuous repre-
sentation of molecules number fails to represent the actual behaviour of the reaction
network. There are several reasons for this. First, for some biochemical processes,
the number of reactants might only be a few molecules. In such cases, a fraction of a
molecule is meaningless and a discrete description of the species’ molecular count is
essential. Let us consider a set that contains all the possible combinations of number
of molecules, si , that the reaction network can exhibit:

S :=
{

si ∈ Z
n, ∀ i ∈ [1, w]

}
. (4)

Here s(t) : R+ → S is a column vector whose j th entry represents the number of
molecules, s j (t), of the species S j . We note that (4) shows that the entries of s(◦) are
integer numbers, in contrast to the continuous, deterministic formulation.

Second, when we consider a low number of molecules in a reaction network, the
reaction rates can no longer be modelled by the Law of Mass Action. This follows
from the fact that the rate at which reactants become products does not depend only on
the temperature and specific properties of the meeting reactants, but also on whether
the reactants actually meet in a timely fashion. Let us assume that the kth reaction
is the only reaction occurring in the time interval [t, t + τ). Hence the number of
molecules at time t + τ is

s(t + τ) = s(t) + nk, (5)
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Table 1 Different kinds of chemical reactions and their associated velocity and propensity

Reaction Velocity Propensity Parameter relationship

0 −→ S1 v1 = δ1 a1 = k1 k1 = NVδ1

S2 −→ X v2 = δ2c2(t) a2 = k2s2(t) k2 = δ2

S3 + S4 −→ X v3 = δ3c3(t)c4(t) a3 = k3s3(t)s4(t) k3 = δ3/(NV)

2S5 −→ S5 + X v4 = δ4c2
5(t) a4 = k4s5(t)(s5(t) − 1)/2 k4 = 2δ4/(NV)

The symbol Si denotes a species, ci represents the concentration of species Si , and v j (◦) is the velocity of
the j th reaction. Likewise, si denotes the number of Si molecules and a j (◦) represents the propensity of the
j th reaction. The units of concentrations are in molar [M], the volume V is in litres [l], and the Avogadro
constant is N = 6.02214 × 1023 [molecules/mol]

where nk represents the kth column of the stoichiometric matrix N in (2). In this
framework, Gillespie (1977) considered a measure of the probability of the kth reac-
tion to occur in the time interval [t, t + dt), given that the number of molecules in
time t is s(t). This probability is given by ak(s(t))dt , where ak(s(t)) is the so-called
reaction propensity and represents the reaction probability per unit of time of the kth
reaction. The propensities for some common reactions and their relationship with the
corresponding velocities of reaction are given in Table 1.

By comparing the value of all the reactions propensities, one can determine which
reaction is more likely to happen within the time-interval [t, t + τ). This is the basic
idea behind the SSA. For a thorough explanation of this algorithm and the overview
of alternative simulation algorithms including τ -leap methods, delays, and reaction–
diffusion simulation algorithms, we refer the interested reader to Barrio et al. (2010);
Cai (2007); Erban et al. (2007). Also, there exist recent formulations of exact stochastic
simulation algorithms whose aim is to reduce some superfluous calculations in the
SSA; for instance, the next reaction method, NRM (Gibson and Bruck 2000) and
optimized direct method, ODM (Cao et al. 2004).

Single SSA runs yield trajectories that describe the species’ number of molecules
in time. However, it is difficult to infer properties of the reaction network from single
implementations of this algorithm. To obtain a better description of the system, a
usual strategy is to run the SSA a large number of times and to extract statistical
information from the outcome of these simulations. However, this approach might be
computationally demanding and, hence, the study of intricate reaction networks might
become infeasible.

An alternative way to discern some of the properties of the reaction network is to
analyse an associated ODE. The solution of such an ODE describes the probability
of the reaction network’s state to be si at time t , which we further denote as p

(
si , t

)
.

This ODE is known as the CME:

d

dt
p

(
si , t

)
= −p

(
si , t

) m∑

k=1

ak(si ) +
m∑

k=1

p
(

si − nk, t
)

ak(si − nk). (6)

Let

p(t) :=
(

p
(

s1, t
)

. . . p
(
sw, t

))T : S × R+ → [0, 1]w, (7)
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where w was introduced in (4) as the number of distinct states si that the reaction
network (1) can exhibit. Then, Equation (6) in matrix form is

d

dt
p(t) = Ap(t), p(0) = p0, (8)

where the entries of A ∈ R
w×w are given by

A j i =

⎧
⎪⎨

⎪⎩

−∑m
k=1 ak(si ), i = j,

ak(si ), ∀ j : s j = si + nk,

0, otherwise.

(9)

When the number of states si are finite, it is possible to obtain the closed form solution
of the CME in (8). In turn, when w is prohibitively large or infinite one may use the
Finite State Projection method (Munsky and Khammash 2006) to obtain a matrix A
with finite number of states, which leads to an approximation of the solution of the
CME. In the following section, we present exact formulae for the solution of linear
ODEs which can be used to derive closed-form analytical solutions of (9).

2.2 Linear ODEs Analytical Solution

The forthcoming propositions present explicit formulae for the solution of finite-
dimensional, time-invariant, linear ODEs of the following form

d

dt
e(t) = Ae(t), e(0) = e0, (10a)

y(t) = Ce(t), (10b)

where e(t) : R+ → R
n , A ∈ R

n×n , and C selects a defined number of states of e(t).
The following proposition presents a formula for y(t), when the eigenvalues of A are
simple.

Proposition 1 Consider a linear system of the form (10), and assume that the eigen-
values, λi ∀ i ∈ [1, n], of A are simple. Then

y(t) =
n∑

�=1

ϑ� exp(λ�t)M(λ�)e0, (11)

where λ� is the �th eigenvalue of A, and M(λ�) is as follows

M(λ�) := C

⎛

⎜⎝
m11(λ�) m21(λ�) . . . mn1(λ�)

...
...

. . .
...

m1n(λ�) m2n(λ�) . . . mnn(λ�)

⎞

⎟⎠ . (12a)
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Here mi j (λ�) is the i j th cofactor of the matrix λ�In − A. In addition,

ϑ� :=
⎛

⎝
n∏

k=1,k �=�

λ� − λk

⎞

⎠
−1

. (12b)

The proof can be found in Appendix. We note that the expression (11) can be
rewritten in matrix form as

y(t) = D exp(λt), (13)

where the column vector λ ∈ R
n contains all the eigenvalues of A in (10); in turn,

exp(λt) is the element-wise application of the exponential function to the vector λt ;
and the �th column of D is

D� := ϑ�M(λ�)e0.

We note that the formula in (13) can be derived in terms of the exponential matrix:
y(t) = C exp(At)e0 (Gantmakher 1959, p. 118). However, calculating the exponential
matrix is known to be a slow computational process. In turn, the formula in (13) relies
on an accurate computation of the eigenvalues. The following corollary considers the
case in which all the initial concentrations are zero except for that of the i th state.

Corollary 1 Consider the system analysed in Proposition 1. Additionally, let the j th
entry of the initial condition vector be the only nonzero initial condition: ei (0) =
0 ∀ i �= j . Then

y(t) = e j (0)

n∑

�=1

ϑ� exp(λ�t)m j (λ�),

where m j (λ�) is the j th column of M(λ�) defined in (12a).

The proof follows directly from evaluating (11) with the initial condition described
above. In Proposition 1 we assumed that the eigenvalues of A are simple. Although
unlikely, in some cases the eigenvalues might be repeated. We refer the interested
reader to the Supplemental Online Material (SOM) for the case of repeated eigenvalues.
Moreover, we note that the expressions derived in this section can be directly used to
solve the CME in (8).

We note that A in (8) is a square matrix of order w, where w is the number of
states of the CME. This suggests that even for simple reaction topologies with tens or
hundreds of molecules, the number of differential equations to simultaneously solve
becomes prohibitively large. As the number of states increases, the dimension of the
CME explodes, rendering infeasible the computation of eigenvalues λ� and cofactor
matrices M(λ�) required for the evaluation of the analytical solution. Alternatively,
the numerical solution of the ODEs defining the CME might be able to handle larger
systems than the analytical approach, at the cost of needing to assess stability and
accuracy of such numerical approach.
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In cases in which the number of states of the CME is prohibitively large or even
infinite, it is possible to use the Finite State Projection method (Munsky and Khammash
2006) or the approach described in López-Caamal and Marquez-Lago (2014), for
example. From these approaches one can obtain a matrix A with a smaller, finite
number of states. Such a matrix can be used to obtain approximation of the CME via
the analytical solutions described in this section.

In the following section, we analyse more specific reaction networks composed
exclusively of zeroth and first-order reactions, for which exact analytical solutions
can be obtained along with noticeable reduction of the computational burden. This
follows from the fact that the ODEs required to derive such solutions will be of the
order of the number species in the reaction network (n), rather than the number of
states of the CME (w).

3 Monomolecular Reaction Networks

In this section, we analyse reaction networks solely composed of the reaction networks
shown in Table 2, and denote them in the following as monomolecular reactions. To
overcome the shortcomings related to the computational burden, Jahnke and Huisinga
(2007) derived the closed-form solution of the CME that models a monomolecular
reaction network. In this section, we will focus on such reaction networks and we
present the closed-form, analytical solution of the probability distributions for each
state in such reaction networks.

3.1 Analytical Solution of the CME of Monomolecular Reaction Networks

Let us consider the following reaction network

Si
kfi�
kbi

S j , Si
kdi−→ 0, 0

ksi−→ Si , ∀ i, j ∈ [1, n], i �= j. (14)

The constants kfi , kbi , kdi , ksi are nonnegative real numbers characterising the propen-
sity reaction rates described in Table 2. For now, we will assume that not all the degra-
dation constants are zero. The stoichiometric matrix N and the reaction rate vector
v(c(t)) in (2) are partitioned as follows

N = (
NL N0

)
, (15a)

v(c(t)) = (
(Gc(t))T v0

T
)T

. (15b)

Table 2 Types of
monomolecular reactions and
their propensities

Reaction Propensity

Si
kf1−−→ S j a1 = kf1si (t)

0
ks2−−→ S� a2 = ks2

Sm
kd3−−→ 0 a3 = kd3sm (t)
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Here NL gathers the stoichiometric vectors of the linear reactions and N0 those of the
zeroth-order reactions (synthesis rates). The dimensions of the matrices above are NL ∈
R

n×mL , G ∈ R
mL×n, N0 ∈ R

n×(m−mL ), v0 ∈ R
m−mL . Hence, in the deterministic

formulation, the vector c(t) satisfies the following ODE

d

dt
c(t) = Ac(t) + b, (16)

where A ∈ R
n×n and b ∈ R

n are defined as follows

A := NLG, (17a)

b := N0v0. (17b)

Additionally we will consider the 1-norm of the vector x, defined as |x| := ∑n
k=1 |xk |,

along with the Multinomial and Poisson distributions whose probability density func-
tions are given, respectively, by

N
n × N × [0, 1]n → [0, 1] : M (s, ξ, q)

:=
{

ξ ! (1−|q|)ξ−|s|
(ξ−|s|)!

∏n
k=1 (sk !)−1 (qk)

sk , |s| ≤ ξ

0, otherwise,
(18a)

N
n × R

n≥0 → [0, 1] : P (s, ν) := exp (− |ν|)
n∏

k=1

(sk !)−1 (νk)
sk . (18b)

Finally, the convolution of functions p1,2(x) : N
n → R is defined as

p1(s) ∗ p2(s) :=
∑

z

p1(z)p2(s − z). (19)

With these definitions at hand, the forthcoming theorem presents an analytical formula
for the solution of the CME in (6) with the initial probability distribution

p (s0, 0) = δξ (s0) :=
{

1, s0 = ξ

0, otherwise.
(20)

Theorem 1 (Jahnke and Huisinga 2007) Consider the monomolecular reaction net-
work in (14) with the initial distribution given in (20), for some ξ ∈ N

n. Then the
probability distribution at time t > 0 is

p
(

si , t
)

= P
(

si , ν(t)
)

∗ M
(

si , ξ1, q1(t)
)

∗ . . . ∗ M
(

si , ξn, qn(t)
)

,

where the parameter vectors qi (t) and ν(t) are the solution of the ODEs

d

dt
q j (t) = Aq j (t), q j (0) = ε j , ∀ j ∈ [1, n], (21a)
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d

dt
ν(t) = Aν(t) + b, ν(0) = 0. (21b)

A and b are defined in (17) and ε j is the j th column of a n × n identity matrix.

Another useful result, Proposition 3 in (Jahnke and Huisinga 2007), is an expression
for the marginal probability distribution for some species of interest.

Proposition 2 (Jahnke and Huisinga 2007) Let p (s, t) be the solution of the CME
(6) and I be the set of subindexes of the variables si of interest. Consider a vector y
whose entries are si ∀ i ∈ I and a vector z which comprises the remaining entries of
s. Then the marginal distribution,

F(y, t) :=
∑

∀z

p ((y, z) , t) =
∑

z1

∑

z2

. . . p ((y, z) , t) ,

of p (s, t) is given by

F(y, t) = P (
y, ν̃(t)

) ∗ M
(

y, ξ1, q̃1(t)
)

∗ . . . ∗ M (
y, ξn, q̃n(t)

)
.

In the equation above, the parameter vector q̃ has entries qi ∀ i ∈ I, where q is given
by the solution of (21a). The definition of ν̃ follows similarly.

In the forthcoming section, we make use of Theorem 1 and Proposition 2 (Jahnke
and Huisinga 2007) to obtain an exact solution for the marginal probability distribution
of the first and last state in a monomolecular reaction network. Thus, we will reduce
the full system into an exact description of the species of interest.

3.2 Marginal Probability Distribution for Selected Species

In the previous section, we showed that the ODE (16) provides a description of the
numbers of molecules for each species in the reaction network (14). In this section
we will obtain the analytical solution of the ODE describing the dynamics of selected
species in the reaction network. To obtain the solution to such an ODE, first consider
that A in (16) has no zero eigenvalues. Thus, we can define the error coordinate

e(t) := c(t) − c̄, (22)

where c̄ := −A−1b represents the steady state number of molecules. In these coordi-
nates the model (16) becomes

d

dt
e(t) = Ae(t), e(0) = e0, (10a)

y(t) = Ce(t), (10b)

where C selects the entries of interest in e(t). As described in Proposition 2, the
marginal probability distribution for selected species is given by the convolution of
probability distributions. These probability distributions depend on the parameters
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q̃ j (t) and ν̃(t), which are solutions of the differential equations in (21). There, A
is as in (10a) above. In Proposition 1 and Corollary 1, we derived expressions for
such solutions. With the appropriate variables, the solutions for q̃ j (t) and ν̃(t) are
given by

q̃ j (t) =
n∑

�=1

ϑ� exp(λ�t)m j (λ�), (23a)

ν̃(t) = −
n∑

�=1

ϑ� exp(λ�t)M(λ�)ν̄ + Cν̄. (23b)

where ϑ� and M(λ�) are as in (12); the vector m j (λ�) is the j th column of M(λ�); and
ν̄ is the steady state of (21b), i.e., ν̄ = −A−1b. In case A has repeated eigenvalues, we
refer the interested reader to the supplemental online material (SOM) for the derivation
of analogue expressions to (23). In the following section, we apply these results to an
unbranched chain of monomolecular reactions.

3.3 Unbranched Monomolecular Reaction Chain with Synthesis and Degradation

In this section we focus on a more specific class of reaction networks described by the
following reactions

S1
kf1�
kb1

S2
kf2�
kb2

. . .
kfn−1�
kbn−1

Sn, (24a)

Si
kdi−→ 0, (24b)

0
ksi−→ Si . (24c)

For this reaction network, the matrices A and b in (16) are

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

− (kf1 + kd1) kb1 0 . . . 0 0 0

kf1 − (kb1 + kf2 + kd2) kb2

.

.

. 0 0 0
.
.
.

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

0 0 0 . . . kfn−2 − (kbn−2 + kfn−1 + kdn−1) kbn−1

0 0 0 . . . 0 kfn−1 − (kbn−1 + kdn)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(25a)

b =
(

ks1 ks2 . . . ksn

)T
. (25b)

As noted in Barrio et al. (2013), the matrix A above is a real tridiagonal matrix with
positive off diagonal elements and, hence, it is similar to an Hermitian matrix (Veselić
1979; Bernstein 2009, p. 359). This implies that A has real, simple eigenvalues. In
addition, the Gerschgorin disk of the i th column lies in the left hand complex plane
at a distance kdi of the imaginary axis. However, for large dimensions of A, the
numerical computation of the eigenvalues of A might not yield real eigenvalues, due
to accumulation of numerical errors during the computations (Wilkinson 1984).
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We note as well, that for most kinetic parameter values, the columns of A are linearly
independent. Hence A has no zero eigenvalue and we can make use of Proposition 1
and Corollary 1 to obtain closed form solutions for the first and last states of the
reaction network.

The matrix M(ζ ) in (12a) is composed of some columns of the adjugate matrix
of ζ I − A. In general, we would need to compute as many cofactors of ζ I − A as
its number of elements to construct this adjugate matrix. However, for a tridiagonal
matrix there is a recursive algorithm that obtains elements of its inverse, from which the
adjugate matrix of ζ I − A can be easily computed and at a lower computational cost.

Proposition 3 (Usmani 1994) Let T be a square, n×n, tridiagonal, invertible matrix;
that is Ti j = 0 for |i − j | > 1. Then the elements of the inverse of T are given by

(
T −1

)

i j
= (θn)−1 ×

⎧
⎪⎨

⎪⎩

(−1)i+ jθi−1φ j+1
∏ j−1

k=i Tk,k+1, i < j,

θi−1φi+1, i = j,

(−1)i+ j θ j−1φi+1
∏i

k= j+1 Tk,k−1, i > j,

(26)

where θi and φi satisfy the recursions

θi = Tiiθi−1 − Ti,i+1Ti−1,iθi−2, θ−1 = 0, θ0 = 1, i ∈ [1, n],
φi = Tiiφi+1 − Ti,i+1Ti+1,iφi+2, φn+2 = 0, φn+1 = 1, i ∈ [1, n].

Of note, the θi s above are the principal minors of T, thus θn = det (T). Hence the
adjugate matrix of T can be obtained by multiplying the expression in (26) by θn .

In the following section, we revisit the unbranched monomolecular reaction network
studied in this section, while considering all the synthesis and degradation rates to be
equal to zero. In that case, A is singular. Hence the equilibrium point of such a network
has to be derived in an alternative way.

3.4 Unbranched Monomolecular Reaction Chain

In this section we focus on the following reaction chain

S1
kf1�
kb1

S2
kf2�
kb2

. . .
kfn−1�
kbn−1

Sn . (24a)

For this case, the stoichiometric matrix and reaction rate vector in (15) have the form

NL =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 . . . 0

1 −1
. . .

...

0 1
. . .

...
...

. . .
. . .

...

0 0
. . . −1

0 0 . . . 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ N
n×(n−1), (27a)
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G =

⎛

⎜⎜⎜⎜⎝

kf1 −kb1 0 . . . 0 0

0 kf2 −kb2
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 0 . . . kfn−1 −kbn−1

⎞

⎟⎟⎟⎟⎠
∈ R

(n−1)×n .

(27b)

Whence the matrix A in (16) becomes

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

−kf1 kb1 0 . . . 0 0 0

kf1 − (kb1 + kf2) kb2
... 0 0 0

...
. . .

. . .
. . .

. . .
. . .

...

0 0 0 . . . kfn−2 − (kbn−2 + kfn−1) kbn−1
0 0 0 . . . 0 kfn−1 −kbn−1

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(28)

and the vector b in (16) is the zero vector. Since both NL and G in (27) are rank
deficient, the matrix A is also rank deficient. The forthcoming proposition provides a
formula for the steady state of (24a), while the details of its derivation can be found
in Appendix.

Proposition 4 Consider the system (16) along with the definitions in (27). This ODE
has a unique fixed point c̄, whose kth entry is

c̄k =
(∏n−1

i=k kbi

) (∏k−1
i=1 kfi

)

∑n
j=1

(∏n−1
i= j kbi

) (∏ j−1
i=1 kfi

)
n∑

i=1

ci (0). (29)

In the proof of the proposition above, we made use of the null spaces of the sto-
ichiometric matrix NL. For a more detailed explanation and use of such null spaces,
we refer the interested reader to Palsson (2006) and to López-Caamal et al. (2014) for
an application of such methods to obtain the equilibrium points of reaction networks
resembling a class of positive feedback loops.

We note that the matrix A in (28) is real, Metzler, tridiagonal and that the elements
of its columns add up to zero. As it is a rank-deficient matrix, it has a zero eigenvalue.
Moreover, the Gershgorin disks of every column lie in the closed left hand side of the
complex plane. As this matrix is also similar to an Hermitian matrix (Veselić 1979), all
the eigenvalues are simple and real and, consequently, the zero eigenvalue is unique.
Despite A being singular, we can use the formula for the equilibrium point in (29) to
evaluate the marginal probability distribution of Proposition 2, via the expressions in
(23).

The dynamical properties of the reaction topology in (24a) with kbi = 0 was
studied in Oyarzún et al. (2009), where the authors show the existence of optimal
principles behind the dynamics of metabolic regulation in the deterministic frame-
work. In the next section, we analyse a last reaction network topology in which the

123



Exact Probability Distributions of Selected Species 2347

first and last species in the chain of reactions react to each other, therefore creating a
ring of reactions.

3.5 Ring of Monomolecular Reactions

In this section we consider the reaction network

S1
kf1�
kb1

S2
kf2�
kb2

. . .
kfn−1�
kbn−1

Sn, (24a)

Sn
kfn�
kbn

S1. (30)

For this reaction network, the stoichiometric matrix and reaction rate vector in (15)
have the form

NL =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 . . . 0 1

1 −1
. . .

... 0

0 1
. . .

... 0
...

. . .
. . .

... 0

0 0
. . . −1 0

0 0 . . . 1 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ N
n×n, (31a)

G =

⎛

⎜⎜⎜⎜⎜⎜⎝

kf1 −kb1 0 . . . 0 0

0 kf2 −kb2
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 0 . . . kfn−1 −kbn−1
−kbn 0 0 . . . 0 kfn

⎞

⎟⎟⎟⎟⎟⎟⎠
∈ R

n×n . (31b)

We will further assume that G is invertible. With the definitions above, A in (16) has
the form

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

− (kf1 + kbn) kb1 0 . . . 0 0 kfn

kf1 − (kb1 + kf2) kb2

.

.

. 0 0 0
.
.
.

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

0 0 0 . . . kfn−2 − (kbn−2 + kfn−1) kbn−1

kbn 0 0 . . . 0 kfn−1 − (kbn−1 + kfn)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

(32)

By following the lines of Proposition 4, we can show that the equilibrium point of this
system is given by

c̄k =
∑n

�=1 wk�∑n
j=1

∑n
�=1 w j�

n∑

i=1

ci (0), (33)
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Here w j� is the j�th element of G−1. The key point of such a derivation is to note
that both the left and right null space of NL are nontrivial and spanned by 1T and 1,
respectively.

As NL in (31) is rank deficient, A has a zero eigenvalue. As in the previous sec-
tion, we can conclude that all eigenvalues have nonpositive real part by analysing
the Gershgorin disks of each column. However, it is not easy to conclude whether or
not the eigenvalues of such a matrix are simple or real, as they depend on particular
kinetic parameter values. Depending on the nature of the eigenvalues of A, we have to
choose between the expressions in (23) or those in the SOM to evaluate the marginal
probability distribution described in Proposition 2. In the following section we apply
our results to particular reaction networks.

4 Case Studies

In this section, first, we analyse a protein autoactivation mechamism modelled by
nonlinear propensities. Later, we obtain the marginal probability density function for
the first and last species in a monomolecular reaction network. In such network, we
compare the computational load required to derive such a probability density function
by means of (i) using the stochastic simulation algorithms to generate independent
trajectories, complemented with further statistical analysis and (ii) the evaluation of
the formula provided in Proposition 2 by means of the expressions for q̃ j and ν̃ in (23).
Finally, we analyse a four-species ring that describes the opening of calcium channels
in the sarcoplasmic reticulum mediated by ryanodine receptors.

4.1 Protein Autoactivation Mechanism

Consider the following protein autoactivation mechanism

P + A
kf1�
kb1

2A, P
kd1−→ 0, A

kd2−→ 0, (34)

where P represents a protein and A its active form. We will focus on the derivation
of the probability of having a certain number of active proteins A, given an initial
condition.

By selecting the vector order s = (Number of molecules of P, Number of
molecules of A)T , the stoichiometric matrix is

N =
(−1 1 −1 0

1 −1 0 −1

)

and the propensity vector becomes (cfr. Table 1)

a(s(t)) = (
kf1s1(t)s2(t)

kb1
2 s2(t)(s2(t) − 1) kd1s1(t) kd2s2(t)

)T
.

We note that the reaction network in (34) is a closed system, hence the possible
combinations of number of molecules is finite and determined by the initial condition.
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For simplicity, let us assume that we initially have 2 molecules of P and 1 molecule
of A. Let us consider that the set S in (4) is ordered as follows

S =
{(

2
1

)
,

(
1
2

)
,

(
3
0

)
,

(
1
1

)
,

(
2
0

)
,

(
0
3

)
,

(
0
2

)
,

(
0
1

)
,

(
1
0

)
,

(
0
0

)}
. (35)

With this order, along with the parameters values {kf1, kb1, ks1, ks2} = {0.15, 0.1, 0.13,

0.2}[s−1], the matrix A in (8) is

A = 1

100

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−76 10 0 0 0 0 0 0 0 0
30 −93 0 0 0 30 0 0 0 0
0 0 −39 0 0 0 0 0 0 0
26 40 0 −48 0 0 10 0 0 0
20 0 39 0 −26 0 0 0 0 0
0 30 0 0 0 −90 0 0 0 0
0 13 0 15 0 60 −50 0 0 0
0 0 0 13 0 0 40 −20 0 0
0 0 0 20 26 0 0 0 −13 0
0 0 0 0 0 0 0 20 13 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(36)

which has simple and real eigenvalues. As we are interested in the probability of having
a certain number of molecules of A, let

y(t) := (Probability(s2 = 0) Probability(s2 =1) Probability(s2 =2) Probability(s2 = 3))T ,

which can be computed as y(t)=Cp(t), were p(t) is the solution of the CME in (10).
To construct C we note that to obtain Probability(s2 = 0), for instance, we have to
add the probabilities of being in states s3, s5, s9, and s10, following the order of the
states given in (35). Hence in the first row of C, we fill in a 1 for the third, fifth, ninth,
and tenth position and leave a zero in the remaining elements, so as the multiplication
of this row by p(t) yields the desired sum. By continuing this procedure for all rows,
the matrix C becomes

C =

⎛

⎜⎜⎝

0 0 1 0 1 0 0 0 1 1
1 0 0 1 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0

⎞

⎟⎟⎠ .

Assuming that with probability 1 the initial state is s1, we can avail of Corollary 1
to obtain the solution for y(t). Due to space constrains, we omit the explicit formula
for y(t) and depict in Fig. 1 such a solution. It is worth noting that, for the simple
reaction network with only 3 initial molecules studied in the foregoing example, we
have associated a CME with 10 states. In turn, if we wanted to analyse the very same
system but now with 10 initial molecules for each species, the CME would have 231
states. By increasing the number of initial molecules, the number of states of the CME
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Fig. 1 Probabilities of having a specific number of active molecules, for the reaction network in (34), with
the parameters described in Example 4.1.

will quickly increase, hence rendering infeasible its analytical approach. Especially
when the number of reactions is large. In the following section, we study an unbranched
monomolecular reaction chain.

4.2 Computational Load for an Unbranched Monomolecular Reaction Chain

Now, we focus on an unbranched monomolecular reaction network with synthesis and
degradations for all species, as shown in (24a,b,c) of Sect. 3.3. That is, we consider
the following reaction network

S1
kf1�
kb1

S2
kf2�
kb2

. . .
kfn−1�
kbn−1

Sn, (24a)

Si
kdi−→ 0, (24b)

0
ksi−→ Si . (24c)

There we concluded that the eigenvalues of the matrix A in (16) are simple and
real. Hence, we may use the closed form solutions for q̃ j and ν̃ given in (23) and
Proposition 2, so as to obtain the marginal probability distribution for the first, S1,
and last species, Sn . Additionally, as A in (25a) is a tridiagonal matrix, we avail of
Proposition 3 to compute the cofactors that compose M(λ�) in (12a).

We implemented these expressions in a 3.2 GHz Quad-Core Intel Xeon computer
with 16GB of RAM. Our script was coded in MATLAB© R2012b. To benchmark the
performance of our approach, we also implemented the SSA and varied the number of
species n in the reaction network (24). We chose the parameters kfi , kbi , kdi , ksi to be
randomly drawn from the uniform distribution U [0, 1]. In turn, the initial numbers of
molecules in c(0) were also uniformly randomly drawn from the uniform distribution
U [1, 10].

Once determined the reaction chain length, parameters and initial conditions, we
ran the SSA algorithm 103 and 105 times, respectively. By using the eigenvalues
of A, we estimated the time for the probability distributions to reach equilibrium and
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Table 3 Comparison of the
computational time required by
the implementation of the SSA
and the formulas described in
Sect. 3.3

The comparisson factor r is
defined in (37)

Number of species n r with 103 SSA runs r with 105 SSA runs

5 2.4183 4.2632

10 2.4904 4.3132

15 2.5589 4.5446

20 2.4758 4.7313

25 2.7144 4.8895

30 2.6191 4.7968

35 2.6336 4.6733

40 2.7353 4.4892

45 3.0813 4.8945

50 3.5927 4.7001

performed simulations until such a time was reached. That way we capture all transient
probability distributions. The final time is tf = 6/|λmax|, where λmax is the largest,
non-zero eigenvalue of A. Then, we extracted the marginal probability distribution,
and registered the computational time required by this numerical approach, denoted
by tNUM. In turn, we tracked the time required for the evaluation of our methodology,
denoted by tA. To compare both computational loads, we evaluate the expression

r = log10

(
tNUM − tA

tA

)
, (37)

and summarise this comparison in Table 3 for every chosen chain length n.
Please note that there is no clear trend for r as n increases, owing to the fact

that for every comparison made with a certain number of species and number of
realisations of the SSA a random set of parameters and initial conditions was drawn.
We note that, regardless of the parameters used for simulation, the computational
savings in this example are on the orders of magnitude of the SSA repetitions. From
our computational experiments (data not shown) we noted that the evaluation of the
analytical expressions to obtain the desired marginal probability distributions takes
about the same time as a single run of the SSA algorithm (0.01–1 s).

Furthermore, we note that our approach is based on an exact solution of the marginal
probability distributions. Hence, in addition to computational savings, the accuracy
obtained with our methodology outperforms that obtained by any numerical approach.

Now, we focus on the effect that the chain-length has on the efficiency of our method-
ology. Toward this end, we assigned all the kinetic parameters to be {kfi , kbi , kdi , ksi } =
{1.396, 0.465, 0.851, 0.398}[s−1] ∀ i ∈ [1, n], 10 molecules for each species at t = 0,
and varied the number of species in the chain n. For each n, we performed 103 runs of
different simulation algorithms: namely, (i) the SSA, (ii) the NRM (Gibson and Bruck
2000), (iii) ODM (Cao et al. 2004), and (iv) a hybrid stochastic simulation algorithm
(Liu et al. 2012); analysed their outcome statistically; and compared the computational
time required with that of our methodology.
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Fig. 2 Marginal probability distribution for S1 and S50. The column a depicts the evaluation of the analytical
solution as time progresses, whereas column b shows the marginal probability distribution as obtained from
103 independent runs of the SSA. Likewise, column c shows the outcome of from 103 runs of the hybrid sim-
ulation algorithm. The parameter values are {kfi , kbi , kdi , ksi } = {1.396, 0.465, 0.851, 0.398}[s−1] ∀ i ∈
[1, n] and 10 initial molecules for each species

For exemplification, we present in Fig. 2 the outcome of the analytical solution and
compare it with the analysis of the data arising from 103 runs of Stochastic Simulation
Algorithm, SSA and the hybrid stochastic simulation algorithm in Liu et al. (2012). In
turn, Fig. 3 summarises the benchmark of the computational time. For this example,
we note that the SSA outperforms our implementation of the NRM. This observation
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Fig. 3 Comparison of the computational time overheads recorded from 103 independent runs of the SSA,
NRM, ODM, and a hybrid stochastic simulation algorithm, as compared with our methodology (i.e. formulae
described in Sect 3.3). The parameters values are those used in Fig. 2. The variable r is defined in (37)

aligns with remarks in Cao et al. (2004), which state that the cost of maintaining the
computational structures required for the NRM are high.

We note that the hybrid method is around one order of magnitude slower than the the
rest of the algorithms. This might be consequence of the fact that, for the reaction under
analysis, there might not exist a time-scale separation required by hybrid simulation
methods.

To see this, we depict in Fig. 4 the number of reactions’ firings as a function of the
population average of the limiting species, for each reaction. There one can observe
that all the reactions are clustered into one single group and hence it is difficult to
classify the reactions as fast or slow. We refer the interested reader to Liu et al. (2012,
Sec. III B) for a discussion of a suitable time-scale separation for using this hybrid
simulation method.

Up to now, we have compared the computational time required to obtain the solution
to the CME via our analytical approach and the computational time required for obtain-
ing approximations of such solutions via different stochastic simulation methods. Now
we adopt a converse perspective and compare the accuracy of the simulation-based
methods with that of our closed-form expressions for the solution of the CME.

To do so, we choose η time-points along the transient obtained by the simulation-
based methods and compare the resulting marginal probability distribution FS(y, t)
with our exact, analytical result FA(y, t). We evaluate such a comparison with the
expression

Error = log10

⎛

⎝1

η

η∑

i=1

∑

∀ y

|FA(y, ti ) − FS(y, ti )|
⎞

⎠ . (38)

For this comparison, we opt not to include the hybrid method given that it might
not be suitable for the study of this reaction network, as suggested by the results of
Figs. 2, 3 and 4. For obtaining the marginal probability distributions FS, it is necessary
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Fig. 4 Average reaction propensity as a function of the population average of its reactants in a long SSA
run of the reaction network (24). Each circle represents the average of the reaction propensity for each
reaction as a function of the average of its limiting species. We note that most of the points are gathered in
one region. The discontinuous lines delimit the regions for slow and fast reactions, required for the hybrid
simulation method. The reactions in the region of low population average and low propensity average are
considered slow reactions; whereas the rest of the reactions are considered as fast. Here, we consider the
case in which we have 50 different species (n = 50) and the parameters values are those used in Fig. 2

Fig. 5 Approximation error of the simulation-based method in comparison to the exact analytical solution.
The quantification error is defined by (38) and is measured every 50 runs of every simulation algorithm. The
computational time required for the evaluation of the closed-form expressions is about 0.6 s. We choose
η = 50 time-points along the transient response obtained by the simulation algorithms to evaluate the
approximation error. The rest of the parameters values are as in Fig. 2

to perform repeated runs of the simulation algorithms and average the results. In Fig. 5,
we plot the error registered for every 50 runs of each simulation algorithm as a function
of their computational time.

To conclude this section, we refer the interested reader to the SOM for the derivation
of the steady-state, marginal probability density function via our analytical approach
and a multiscale algorithm. In the following section, we analyse a ring of monomole-
cular reactions that models the ion gating driven by ryanodine receptors.

4.3 Calcium Channel Mediated by Ryanodine Receptor

Cells are endowed with complex mechanisms to regulate the progression of messages
encoded in calcium ions signals. Calcium ions pumps are one of the mechanisms with
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which calcium ions are released from the sarcoplasmic reticulum to the cytosol. A
class of such pumps are the ryanodine receptors (RyR) and are known to mediate
muscular function among many other cellular processes (Lanner et al. 2010).

Stern et al. (1999) modelled the RyR as a four state monomolecular reaction chain
and Keener (2009) showed that the evolution of the time-dependent probability density
functions associated to the gate activity belongs to a subspace of lower dimensions.
We make use of our results to derive an exact equilibrium probability distribution of
the ryanodine-mediated calcium ion gates to be in inactive, S1, or open, S4, states,
thus reducing the system description exactly. This gate can be modelled by

S1
kf1�

kb1κ2
S2

kf2κ�
kb2

S3
kf3κ

2

�
kb3

S4,

S4
kf4κ�
kb4

S1.

Here κ is the number of calcium ions and the states S2,3 denote intermediate configu-
rations in which the calcium ions gate is closed. We take from Stern et al. (1999) the
following parameters values:

{kf1, kf2, kf3, kf4} = {0.06, 0.005, 35γ 2, 0.5γ }[ms−1],
{kb1, kb2, kb3, kb4} = {35γ 2, 0.5γ, 0.06, 0.005}[ms−1].

In the definition of the parameters, we have introduced the factor γ = 1×10−3/(NV),
to transform the kinetic constants from the deterministic setting reported in Stern et
al. (1999) to the stochastic formulation. N = 6.02214 × 1023[molecules/mol] is the
Avogadro constant and V is the volume of the region in which the reactions are taking
place. Here, we assume a volume of 1 microlitre [μ l].

Our computational analysis (data not shown) concluded that the eigenvalues of A in
(32) are simple and real for κ = {10, 30, 50, 70}×1015 ions of calcium. Furthermore,
we consider 100 gates. By assuming that all gates are initially in the inactive state S1,
the equilibrium point c̄ in (33) becomes

c̄ = �

⎛

⎜⎜⎝

5.4690 × 1013κ3(6.3225 × 1015κ2 + 5.4408 × 1033κ + 4.2595 × 1052)

1.9057 × 1053κ(1.1281 × 1013κ2 + 9.7075 × 1030κ + 7.5999 × 1049)

1.2949 × 1084κ2 + 1.582 × 10124κ + 1.2385 × 10143

2.5730 × 1031κ2(8.0931 × 1015κ2 + 6.9642 × 1033κ + 5.4506 × 1052)

⎞

⎟⎟⎠ ,

where � := [(7.02 × 1011κ + 4.22 × 1029)(4.94 × 1015κ4 + 4.25 × 1033κ3 + 6.4 ×
1052κ2 + 2.64 × 1070κ + 2.07 × 1089)]−1. The numerical values above are rounded
to four decimals due to space limitations and to enhance readability. With these values
and definitions, we now focus on the derivation of a probability density function for the
states S1 and S4, assuming a constant number of calcium ions and until the gates reach
their final configuration (t → ∞). To obtain the marginal probability distribution for
states S1 and S4, we note that in Proposition 2
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Fig. 6 Marginal probability distribution for the inactive, S1, and open, S4, states of a ryanodine-mediated
calcium ions gate. The number of surrounding calciums ions, κ , is assumed constant during the gate
operation, yet different for each one of the panels above

M
(
(S1, S4)

T , 0, q̃ j
)

= δ0 ∀ j �= 1,

as all the gates are in state S1 at time t = 0. Moreover, as there are no synthesis of
gates b = 0, from (21b) and Proposition 2 we note

ν(t) = 0 ∀ t �⇒ P
(
(S1, S4)

T , ν̃(t)
)

= δ0.

Now, from the ODE governing q1(t) in (21a) and accounting for the definition of the
equilibrium point in (33), we have

q̃1(∞) = �

(
5.4690 × 1013κ3(6.3225 × 1015κ2 + 5.4408 × 1033κ + 4.2595 × 1052)

2.5730 × 1031κ2(8.0931 × 1015κ2 + 6.9642 × 1033κ + 5.4506 × 1052

)
.

Hence, the marginal probability distribution defined in Proposition 2 reduces to

lim
t→∞ F

(
(S1, S4)

T , t
)

= M
(
(S1, S4)

T , 100, q̃1(∞)
)

.

It is important to note that q̃1(∞) depends on the constant number of calcium ions
κ . Figure 6 shows the the marginal probability distribution defined above as κ varies.
In Fig. 6 we note that as the number of calcium ions surrounding the gates increases,
the number of open gates increases to expel the excess of calcium ions (Stern et al.
1999). For the volume considered, the concentration of calcium ions ranges from 15
to 120 [mM], in contrast to the basal concentration of calcium (around 90[nM]) in
diverse organisms such as E. coli (Gangola and Rosen 1987) and human nonexcitable
cells (Korngreen et al. 1997).

Although one might expect that the number of open gates increases proportionally
to the number of calcium ions, the nature of the gates is to remain open in a window
of time for the exchange of ions, so as to regulate the calcium ions number within the
sarco/endoplasmic reticulum and in the cytosol. After this exchange is finished, the
gate remains closed (Stern et al. 1999). However, our calculations for the steady state
suggest that when the surrounding calcium concentrations are orders of magnitude
larger than the basal concentration of calcium, then some of the gates might remain
open.

123



Exact Probability Distributions of Selected Species 2357

5 Concluding Remarks

Chemical reactions are stochastic, discrete events. Especially when the number of
molecules is low, this intrinsic randomness characterises the dynamical behaviour of
the species’ molecular numbers. A usual approach to analyse these kind of systems
is to use the SSA algorithm, namely, to generate a large number of trajectories of
species’ molecular number and analyse them statistically. However, this approach
might require a large computational load to yield accurate results.

In this paper we focused on exact solutions of the CME. By availing of an analyt-
ical solution, we derived closed-form expressions for the time-dependent probability
associated with selected species of interest. In contrast to a numerical approach, these
closed-form formulae can be reused for any initial condition as well as for exploring
transient characteristics, such as maximum values of a probability of interest, time to
approach equilibrium, steady-state probability distributions, among others. We note
that in order to obtain similar results numerically, the CME would need to be solved
(directly or approximated via the SSA) thousands of times, or even more, as these
characteristics might be highly sensitive on initial conditions.

Our motivation to study only selected species is based on the limited availability
of experimental data, hence the comparison between in silico and wet experiments is
only possible for a reduced number of species. Moreover, in some pathways only some
species or molecular configurations are relevant for downstream processes. Although
we obtained time-dependent solutions of the CME for general reaction networks, we
note that the number of states of such a equation increases rapidly as the number
of molecules, reactions, and/or species increases; thereby, hindering an analytical
treatment. In the case of monomolecular reaction networks, the ODEs required for
obtaining the probability distribution of selected species are of the order of species
involved, instead of the number of states of the CME.

In particular, we studied a protein autoactivation mechanism with nonlinear propen-
sities. Also, we studied general and particular topologies of monomolecular reaction
networks: an unbranched chain and rings of monomolecular reactions. For the former
case, we compared the computational load of our results with that of simulation-based
approaches. In such an example, we observed that the time required to implement
our results require about the same time as some runs of the SSA, yet provide an
exact description of the time-dependent, marginal probability density function for
the species of interest. Additionally, we analysed a ring of reactions, which model
calcium ion gates mediated by ryanodine receptors. There we provided an analyti-
cal solution for the equilibrium marginal probability distribution for the gates to be
inactive or open as a function of the surrounding calcium in the sarco/endoplasmic
reticulum.

By obtaining the analytical solution for those species of interest, we have provided
the means to study systems that might become intractable by other methods. We
foresee that these methods will assist on the understanding of processes underpinning
selected phenomena in biochemistry, population dynamics, among other areas.
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Appendix

Proof of Proposition 1

Proof The solution of (10) is given by

y(t) = L−1
{

C (ζ I − A)−1
}

e0

= L−1
{
(det (ζ I − A))−1 M(ζ )

}
e0, (39)

where L−1{◦} represents the inverse Laplace transform, ζ is the complex frequency
variable, and M(ζ ) is as in (12a). The partial fraction expansion of the ratio of poly-
nomials is given by Gantmakher (1959, Ch. V.3)

p(ζ )

q(ζ )
=

n∑

�=1

p(λ�)
d

dζ
q (λ�)

1

ζ − λ�

, (40)

when the degree of p(ζ ) is less than the degree of q(ζ ) and q(ζ ) has simple, real roots
λi . In addition, the derivative of the determinant of a square, invertible matrix W(ζ )

is given by

d

dζ
det(W(ζ )) = det(W(ζ ))trace

(
W−1(ζ )

d

dζ
W(ζ )

)
. (41)

Furthermore Horn and Johnson (2012)

det (A) =
n∏

i=1

λi , (42a)

trace
(
Aα

) =
n∑

i=1

λα
i . (42b)

In turn, given that λ� are the eigenvalues of A, the eigenvalues of ζ I − A are ζ − λ�.
Using expression (41) and (42), the derivative of det (ζ I − A) evaluated at ζ = λ�

yields

d

dζ
det (ζ I − A)

∣∣∣∣
ζ=λ�

=
(

n∏

k=1

ζ − λk

) ⎛

⎝
n∑

j=1

1

ζ − λ j

⎞

⎠

∣∣∣∣∣∣
ζ=λ�

,
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=
n∑

j=1

n∏

k=1,k �= j

λ� − λk,

=
n∏

k=1,k �=�

λ� − λk .

By using the partial fraction expansion in (40) and the expression above, y(t) in (39)
becomes

y(t) = L−1

{
n∑

�=1

ϑ�

ζ − λ�

M(λ�)

}
e0.

The scalar ϑ� was defined in (12b). By taking the inverse Laplace transform of the
expression above we obtain (11), as desired. 
�

Proof of Proposition 4

Proof From the definitions in (27), we note that rank (NLG) = n − 1. Hence, form
the Rank-Nullity theorem, the right null space of NLG is nontrivial with dimension 1.
Let the columns of R ∈ R

n span the right null space of NLG, then

NLGR = 0.

It is important to note that NLG is a tridiagonal matrix, hence a basis for its right null
space can be computed recursively. For our case, this basis is given by

R =
(

n−1∏
i=1

kbi
kfi

n−1∏
i=2

kbi
kfi

. . .
kbn−1
kfn−1

1

)T

. (43)

In turn, from (2), every fixed point c̄ satisfies

NLGc̄ = 0.

That is, we can express c̄ as linear combination of the columns of R:

Rα = c̄, (44)

for a suitable α ∈ R. The equation above is an algebraic equation with n+1 unknowns
(one for each entry of c̄ and another one for α) and n equations. To complete the
algebraic system, we note that the left null space of NL is nontrivial and of dimension
1. Let the rows of L span the left null space of NL. Hence, from (2), we have

L
d

dt
c(t) = 0.
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Integration of the equation above from 0 to t yields

Lc(t) = Lc0, ∀t (45)

In addition, for our case

L = 1T . (46)

From the equation above, equation (44) and since (45) is valid for any t it follows

Lc̄ = LRα = Lc0

α = (LR)−1Lc0 (47)

α =
∏n−1

i=1 kfi
∑n

j=1

(∏n−1
i= j kbi

) (∏ j−1
i=1 kfi

)
n∑

i=1

ci (0).

For the last step in the derivation above, we used the definitions of R and L in (43) and
(46), respectively. Finally, by substituting the definition of α above into the definition
of the fixed point in (44), its kth coordinate has the form

c̄k =
n−1∏

i=k

kbi

kfi

∏n−1
i=1 kfi

∑n
j=1

(∏n−1
i= j kbi

) (∏ j−1
i=1 kfi

)
n∑

i=1

ci (0).

Further algebraic manipulation leads to the expression in (29). 
�
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