9,679 research outputs found
Credit Enhancement through Financial Engineering: Freeport-McMoRan's Gold-Denominated Depository Shares
In 1993 and early 1994, Freeport McMoRan Copper and Gold (FCX), a mining company, issued two series of gold-denominated depositary shares to raise 430 million dollars expanding their mining capacity in Indonesia. We price the depositary shares using a term structure model for the forward rates implied by gold futures and we show that FCX successfully enhanced the credit quality of the issue. This credit enhancement is achieved because the effect of linking the payoff of the depositary shares to gold reduces default risk and is similar to conventional risk management. However, the bundling of financing and risk management allows the firm to target hedging benefits only to the newly issued securities. The design of the security also overcomes the asset substitution problem. The depositary shares issued by FCX illustrate how firms can enhance credit quality through financial engineering without changing the existing priority ordering of their capital structure.Risk management, Gold-linked, Hybrid Securities
The Structure of AdS Black Holes and Chern Simons Theory in 2+1 Dimensions
We study anti-de Sitter black holes in 2+1 dimensions in terms of Chern
Simons gauge theory of anti-de Sitter group coupled to a source. Taking the
source to be an anti-de Sitter state specified by its Casimir invariants, we
show how all the relevant features of the black hole are accounted for. The
requirement that the source be a unitary representation leads to a discrete
tower of states which provide a microscopic model for the black hole.Comment: 17 pages, LaTex. The presentation in Section 5 was improved; other
minor improvements. Final form of the manuscrip
Local electronic nematicity in the one-band Hubbard model
Nematicity is a well known property of liquid crystals and has been recently
discussed in the context of strongly interacting electrons. An electronic
nematic phase has been seen by many experiments in certain strongly correlated
materials, in particular, in the pseudogap phase generic to many hole-doped
cuprate superconductors. Recent measurements in high superconductors has
shown even if the lattice is perfectly rotationally symmetric, the ground state
can still have strongly nematic local properties. Our study of the
two-dimensional Hubbard model provides strong support of the recent
experimental results on local rotational symmetry breaking. The
variational cluster approach is used here to show the possibility of an
electronic nematic state and the proximity of the underlying symmetry-breaking
ground state within the Hubbard model. We identify this nematic phase in the
overdoped region and show that the local nematicity decreases with increasing
electron filling. Our results also indicate that strong Coulomb interaction may
drive the nematic phase into a phase similar to the stripe structure. The
calculated spin (magnetic) correlation function in momentum space shows the
effects resulting from real-space nematicity
Surface Vacuum Energy in Cutoff Models: Pressure Anomaly and Distributional Gravitational Limit
Vacuum-energy calculations with ideal reflecting boundaries are plagued by
boundary divergences, which presumably correspond to real (but finite) physical
effects occurring near the boundary. Our working hypothesis is that the stress
tensor for idealized boundary conditions with some finite cutoff should be a
reasonable ad hoc model for the true situation. The theory will have a sensible
renormalized limit when the cutoff is taken away; this requires making sense of
the Einstein equation with a distributional source. Calculations with the
standard ultraviolet cutoff reveal an inconsistency between energy and pressure
similar to the one that arises in noncovariant regularizations of cosmological
vacuum energy. The problem disappears, however, if the cutoff is a spatial
point separation in a "neutral" direction parallel to the boundary. Here we
demonstrate these claims in detail, first for a single flat reflecting wall
intersected by a test boundary, then more rigorously for a region of finite
cross section surrounded by four reflecting walls. We also show how the
moment-expansion theorem can be applied to the distributional limits of the
source and the solution of the Einstein equation, resulting in a mathematically
consistent differential equation where cutoff-dependent coefficients have been
identified as renormalizations of properties of the boundary. A number of
issues surrounding the interpretation of these results are aired.Comment: 22 pages, 2 figures, 1 table; PACS 03.70.+k, 04.20.Cv, 11.10.G
Transition to complete synchronization in phase coupled oscillators with nearest neighbours coupling
We investigate synchronization in a Kuramoto-like model with nearest
neighbour coupling. Upon analyzing the behaviour of individual oscillators at
the onset of complete synchronization, we show that the time interval between
bursts in the time dependence of the frequencies of the oscillators exhibits
universal scaling and blows up at the critical coupling strength. We also bring
out a key mechanism that leads to phase locking. Finally, we deduce forms for
the phases and frequencies at the onset of complete synchronization.Comment: 6 pages, 4 figures, to appear in CHAO
Topologically massive magnetic monopoles
We show that in the Maxwell-Chern-Simons theory of topologically massive
electrodynamics the Dirac string of a monopole becomes a cone in anti-de Sitter
space with the opening angle of the cone determined by the topological mass
which in turn is related to the square root of the cosmological constant. This
proves to be an example of a physical system, {\it a priory} completely
unrelated to gravity, which nevertheless requires curved spacetime for its very
existence. We extend this result to topologically massive gravity coupled to
topologically massive electrodynamics in the framework of the theory of Deser,
Jackiw and Templeton. These are homogeneous spaces with conical deficit. Pure
Einstein gravity coupled to Maxwell-Chern-Simons field does not admit such a
monopole solution
Credit Enhancement Through Targeted Risk Managment: Freeport-McMoRan's Gold-Dominated Depository Shares
In 1993 and early 1994, Freeport McMoRan Copper and Gold (FCX), a mining company, issued two series of gold-denominated depositary shares to raise 430 million dollars for expansion of their mining capacity in Indonesia. We price the depositary shares using a term structure model for the forward rates implied by gold futures and we show that FCX successfully enhanced the credit quality of the issue. This credit enhancement is achieved because the effect of linking the payoff of the depositary shares to gold reduces default risk and is similar to conventional risk management. The building of financing and risk management, however, allows the firm to target hedging benefits only to the newly issued securities. The design of the security overcomes the asset substitution problem and credibly commits the firm to hedging. The depositary shares issued by FCX illustrate how firms can enhance credit quality through financial engineering without changing the existing priority ordering of their capital structure
Gravity-driven instability in a spherical Hele-Shaw cell
A pair of concentric spheres separated by a small gap form a spherical
Hele-Shaw cell. In this cell an interfacial instability arises when two
immiscible fluids flow. We derive the equation of motion for the interface
perturbation amplitudes, including both pressure and gravity drivings, using a
mode coupling approach. Linear stability analysis shows that mode growth rates
depend upon interface perimeter and gravitational force. Mode coupling analysis
reveals the formation of fingering structures presenting a tendency toward
finger tip-sharpening.Comment: 13 pages, 4 ps figures, RevTex, to appear in Physical Review
- …