47 research outputs found

    Changes in the Fatty Acids Profile of the Zooplankton Community Reveals the Quality of Four Reservoirs in the Hydroelectric Power Plants Located in the Iguaçu River, Paranå, Brazil

    Get PDF
    Fatty acids are molecules with important physiological functions, proved to be good bioindicators of the presence of natural and chemical stressors and so used as early warning signals. Indeed, biochemical analyzes, such as fatty acids, are an important tool in water body management and water quality analysis, allowing detecting molecular changes in aquatic communities, related to the trophic status of the systems, before they are perceived in the environment. In this work was investigated the fatty acid composition on zooplankton community collected in four reservoirs of hydroelectric plants on the Iguaçu River, Brazil, and assessed the species distribution to assess and compare the water quality in these reservoirs. Results showed the trophic state index presented a wide variation among samples, ranging from oligotrophic (Salto Caxias) to hypereutrophic (Foz do Areia). The most abundant fatty acid was docosahexaenoic acid (DHA, C22:6n3) an essential fatty acid with health benefits, playing a pivotal role in biological functions. This study highlights the sensitiveness of the zooplankton community to environmental conditions and underlines the role of fatty acids as good bioindicators, being good endpoints to use in ecological studies. This supports the zooplankton contribution as a biological quality element in the assessment of reservoir quality elements

    Ecotoxicity variation through parabens degradation by single and catalytic ozonation using volcanic rock

    Get PDF
    Parabens are widely used as antimicrobial and preservative ingredients in pharmaceutical and personal care products. Nevertheless, these compounds have been increasingly seen as emerging contaminants that can be toxic to a wide range of species. In this study, the toxic effect of a mixture of parabens (10 mg/L of each paraben: methyl-, ethyl-, propyl-, benzyl- and butylparaben) and its degradation products through single and catalytic ozonation (using volcanic rock as low-cost catalyst) was investigated over several non-target species: cladocerans, microalgae, clams, macrophytes and cress. The analysis of the toxicity of parabens mixture is relevant since usually these compounds are used as blends rather than individually. While parabens were totally removed both by single and catalytic ozonation the toxicity of the samples resulting from both treatments was generally high. This toxicity was still compared to the one obtained for several dilutions of the initial parabens mixture and it was concluded that the by-products formed are more toxic than the most diluted parabens mixture sample (0.625 mg/L). While catalytic ozonation allows reducing the amount of ozone (about 3-fold) required for total removal of parabens, the resulting treated solution was more toxic than the sample taken at the endpoint of the single ozonation treatment. This suggests that the highest amount of ozone used for single ozonation allowed the elimination of toxic by-products such as hydroquinone and 1,4-benzoquinone. Still, the effect of by-products and parabens interaction depends on the species analyzed due to their different tolerances to potentially toxic products.publishe

    The antagonist and synergist potential of cholinium-based deep eutectic solvents

    Get PDF
    The design of environmentally friendlier solvents has gained increasing relevance in the last decade. Deep eutectic solvents (DES) have recently emerged, with advantages like low-cost and putative lower environmental impact. However, information about DES toxicity is still scarce. This work aims to contribute to profiling the ecotoxicity of DES based on cholinium chloride ([Chol]Cl). Six DES were addressed, combining [Chol]Cl (as hydrogen bond acceptor - HBA) with ethylene glycol, glycerol, 1,2-propanediol, propionic acid, 1-propanol, and urea as hydrogen bond donors (HBD), in different molar ratios. The MicrotoxÂź Acute Toxicity Test, was used for assessing their toxicity towards the marine bacteria Allivibrio fischeri . Because the dissociation of DES in water is expected, analysis appraising the mixtures toxicity theory should be considered, which is a step forward in this field. This analysis suggested that [Chol]Cl and all HBD with the exception of propionic acid:[Chol]Cl 1:2 and 4:1 behave antagonistically, which is contrary to what has been suggested previously. The most extreme cases are Urea:[Chol]Cl and 1-Propanol:[Chol]Cl, with EC50 values higher than their starting materials dosed singly, configuring very promising and biocompatible alternative solvents. Toxicity was found to be dependent on DES composition, as well as on molar proportions of the starting materials.publishe

    Can parasites adapt to pollutants? A multigenerational experiment with a Daphnia x Metschnikowia model system exposed to the fungicide tebuconazole

    Get PDF
    There is increasing evidence about negative effects of fungicides on non-target organisms, including parasitic species, which are key elements in food webs. Previous experiments showed that environmentally relevant concentrations of fungicide tebuconazole are toxic to the microparasite Metschnikowia bicuspidata, a yeast species that infects the planktonic crustacean Daphnia spp. However, due to their short-term nature, this and other experimental studies were not able to test if parasites could potentially adapt to these contaminants. Here, we tested if M. bicuspidata parasite can adapt to tebuconazole selective pressure. Infected D. magna lineages were reared under control conditions (no tebuconazole) and environmentally realistic tebuconazole concentrations, for four generations, and their performance was compared in a follow-up reciprocal assay. Additionally, we assessed whether the observed effects were transient (phenotypic) or permanent (genetic), by reassessing parasite fitness after the removal of selective pressure. Parasite fitness was negatively affected throughout the multigenerational exposure to the fungicide: prevalence of infection and spore load decreased, whereas host longevity increased, in comparison to control (naive) parasite lineages. In a follow-up reciprocal assay, tebuconazole-conditioned (TEB) lineages performed worse than naive parasite lineages, both in treatments without and with tebuconazole, confirming the cumulative negative effect of tebuconazole. The underperformance of TEB lineages was rapidly reversed after removing the influence of the selective pressure (tebuconazole), demonstrating that the costs of prolonged exposure to tebuconazole were phenotypic and transient. The microparasitic yeast M. bicuspidata did not reveal potential for rapid evolution to an anthropogenic selective pressure; instead, the long-term exposure to tebuconazole was hazardous to this non-target species. These findings highlight the potential environmental risks of azole fungicides on non-target parasit- This work was supported by the European Regional Development Fund (programmes COMPETE2020 and PT2020) and by National Funds (Portuguese Science Foundation - FCT, I.P.), through the strategic programmes UID/AMB/50017/2013 and UID/BIA/04050/2019 (POCI-01-0145-FEDER-007569), as well as by the research projects FunG-Eye (POCI-01-0145-FEDER-029505) and EcoAgriFood (NORTE-01-0145-FEDER-000009). Part of the work presented here was developed during the PhD of Ana P. Cuco, who was supported by FCT (PhD grant SFRH/BD/81661/2011). JW was supported by Beethoven Life-1 grant from the German Science Foundation and Polish National Science Center (WO 1587/9-1). Nelson Abrantes is the recipient of an individual postdoctoral research contract (CEECIND/01653/2017)
    corecore