24 research outputs found
In-situ Mössbauer Spectroscopy with MIMOS II at Rio Tinto, Spain
The Rio Tinto, located in southwest Spain, exhibits a nearly constant, acidic pHvalue along its course. Due to the formation of sulfate minerals, Rio Tinto is considered a potential analogue site for sulfate-rich regions on Mars, in particular at the landing site of the Mars Exploration Rover Opportunity, where the ferric sulfate mineral jarosite was identified with Opportunity's Mössbauer spectrometer. Primary and secondary mineralogy was investigated in situ with portable Raman and Mössbauer spectrometers at four different Rio Tinto sampling sites. The two techniques analyse different sample portions due to their specific field of view and sampling depth and provide complementary mineralogical information
Mars Sulfate Formation Sourced in Sulfide-Enriched Subsurface Fluids: The Rio Tinto Model
The extensive evidence for sulfate deposits on Mars provided by analyses of MER and Mars Express data shows that the sulfur played an essential role in the geochemical cycles of the planet, including reservoirs in the atmosphere, hydro-sphere and geosphere. Overall the data are consistent with a fluvial/lacustrine-evaporative origin of at least some of the sulfate deposits, with mineral precipitation through oversaturation of salty acidic fluids enriched in sulfates. This scenario requires reservoirs of sulfur and associated cations, as well as an acidic and oxidizing hydrochemistry which could be provided by surface and subsurface catching of meteoric waters resulting in the presence of sulfur-bearing gases and steam photochemistry. In this work we suggest a new scenario for the extensive generation of sulfates in Mars based on the observation of seasonal changes in the redox and pH of subsurface waters enriched in sulfur that supply the acidic Mars process analog of Rio Tinto. This model considers the long-term subsurface storage of sulfur during most of Noachian and its release from the late Noachian to Hesperian time through weathering by meteoric fluids that would acidify and oxidize the sulfur bearing compounds stored in the subsurface
Characterization of a Subsurface Biosphere in a Massive Sulfide Deposit At Rio Tinto, Spain: Implications For Extant Life On Mars
The recent discovery of abundant sulfate minerals, particularly Jarosite by the Opportunity Rover at Sinus Merdiani on Mars has been interpreted as evidence for an acidic lake or sea on ancient Mars [1,2], since the mineral Jarosite is soluble in liquid water at pH above 4. The most likely mechanism to produce sufficient protons to acidify a large body of liquid water is near surface oxidation of pyrite rich deposits [3]. The acidic waters of the Rio Tinto, and the associated deposits of Hematite, Goethite, and Jarosite have been recognized as an important chemical analog to the Sinus Merdiani site on Mars [4]. The Rio Tinto is a river in southern Spain that flows 100 km from its source in the Iberian pyrite belt, one of the Earth's largest Volcanically Hosted Massive Sulfide (VHMS) provinces, into the Atlantic ocean. The river originates in artesian springs emanating from ground water that is acidified by the interaction with subsurface pyrite ore deposits. The Mars Analog Rio Tinto Experiment (MARTE) has been investigating the hypothesis that a subsurface biosphere exists at Rio Tinto living within the VHMS deposit living on chemical energy derived from sulfur and iron minerals. Reduced iron and sulfur might provide electron donors for microbial metabolism while in situ oxidized iron or oxidants entrained in recharge water might provide electron acceptors
Scientific Goals and Objectives for the Human Exploration of Mars: 1. Biology and Atmosphere/Climate
To prepare for the exploration of Mars by humans, as outlined in the new national vision for Space Exploration (VSE), the Mars Exploration Program Analysis Group (MEPAG), chartered by NASA's Mars Exploration Program (MEP), formed a Human Exploration of Mars Science Analysis Group (HEM-SAG), in March 2007. HEM-SAG was chartered to develop the scientific goals and objectives for the human exploration of Mars based on the Mars Scientific Goals, Objectives, Investigations, and Priorities.1 The HEM-SAG is one of several humans to Mars scientific, engineering and mission architecture studies chartered in 2007 to support NASA s plans for the human exploration of Mars. The HEM-SAG is composed of about 30 Mars scientists representing the disciplines of Mars biology, climate/atmosphere, geology and geophysics from the U.S., Canada, England, France, Italy and Spain. MEPAG selected Drs. James B. Garvin (NASA Goddard Space Flight Center) and Joel S. Levine (NASA Langley Research Center) to serve as HEMSAG co-chairs. The HEM-SAG team conducted 20 telecons and convened three face-to-face meetings from March through October 2007. The management of MEP and MEPAG were briefed on the HEM-SAG interim findings in May. The HEM-SAG final report was presented on-line to the full MEPAG membership and was presented at the MEPAG meeting on February 20-21, 2008. This presentation will outline the HEM-SAG biology and climate/atmosphere goals and objectives. A companion paper will outline the HEM-SAG geology and geophysics goals and objectives
Identification of Hydrated Sulfates Collected in the Northern Rio Tinto Valley by Reflectance and Raman Spectroscopy
OMEGA recently identified spectral signatures of kieserite, gypsum, and other polyhydrated sulfates at multiple locations on the surface of Mars [1,2]. The presence of sulfates was confirmed through in situ spectroscopy by MER Opportunity [3]. An approach to validate these interpretations is to collect corresponding spectral data from sulfate-rich terrestrial analog sites. The northern Rio Tinto Valley near Nerva, Spain, is a good Martian analog locale because it features extensive seasonal sulfate mineralization driven by highly acidic waters [4]. We report on mineralogical compositions identified by field VNIR spectroscopy and laboratory Raman spectroscopy
Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits
The Mössbauer (MB) spectrometer on Opportunity measured the Fe oxidation state, identified Fe-bearing phases, and measured relative abundances of Fe among those phases at Meridiani Planum, Mars. Eight Fe-bearing phases were identified: jarosite (K,Na,H3O)(Fe,Al)(OH)6(SO4)2, hematite, olivine, pyroxene, magnetite, nanophase ferric oxides (npOx), an unassigned ferric phase, and metallic Fe (kamacite). Burns Formation outcrop rocks consist of hematite-rich spherules dispersed throughout S-rich rock that has nearly constant proportions of Fe3+ from jarosite, hematite, and npOx (29%, 36%, and 20% of total Fe). The high oxidation state of the S-rich rock (Fe3+/FeT ~ 0.9) implies that S is present as the sulfate anion. Jarosite is mineralogical evidence for aqueous processes under acid-sulfate conditions because it has structural hydroxide and sulfate and it forms at low pH. Hematite-rich spherules, eroded from the outcrop, and their fragments are concentrated as hematite-rich soils (lag deposits) on ripple crests (up to 68% of total Fe from hematite). Olivine, pyroxene, and magnetite are primarily associated with basaltic soils and are present as thin and locally discontinuous cover over outcrop rocks, commonly forming aeolian bedforms. Basaltic soils are more reduced (Fe3+/FeT ~ 0.2–0.4), with the fine-grained and bright aeolian deposits being the most oxidized. Average proportions of total Fe from olivine, pyroxene, npOx, magnetite, and hematite are 33%, 38%, 18%, 6%, and 4%, respectively. TheMB parameters of outcrop npOx and basaltic-soil npOx are different, but it is not possible to infer mineralogical information beyond octahedrally coordinated Fe3+. Basaltic soils at Meridiani Planum and Gusev crater have similar Fe-mineralogical compositions.Additonal co-authors: P Gütlich, E Kankeleit, T McCoy, DW Mittlefehldt, F Renz, ME Schmidt, B Zubkov, SW Squyres, RE Arvidso
Seeking Signs of Life on Mars: the Importance of Sedimentary Suites as Part of a Mars Sample Return Campaign
Seeking the signs of life on Mars is often considered the "first among equal" objectives for any potential Mars Sample Return (MSR) campaign. Among the geological settings considered to have the greatest potential for recording evidence of ancient life or its pre-biotic chemistry on Mars are lacustrine (and marine, if ever present) sedimentary depositional environments. This potential, and the possibility of returning samples that could meaningfully address this objective, have been greatly enhanced by investigations of an ancient redox stratified lake system in Gale crater by the Curiosity rover
Seeking Signs of Life on Mars: A Strategy for Selecting and Analyzing Returned Samples from Hydrothermal Deposits
Highly promising locales for biosignature prospecting on Mars are ancient hydrothermal deposits, formed by the interaction of surface water with heat from volcanism or impacts. On Earth, they occur throughout the geological record (to at least approx. 3.5 Ga), preserving robust mineralogical, textural and compositional evidence of thermophilic microbial activity. Hydrothermal systems were likely present early in Mars' history, including at two of the three finalist candidate landing sites for M2020, Columbia Hills and NE Syrtis Major. Hydrothermal environments on Earth's surface are varied, constituting subaerial hot spring aprons, mounds and fumaroles; shallow to deep-sea hydrothermal vents (black and white smokers); and vent mounds and hot-spring discharges in lacustrine and fluvial settings. Biological information can be preserved by rapid, spring-sourced mineral precipitation, but also could be altered or destroyed by postdepositional events. Thus, field observations need to be followed by detailed laboratory analysis to verify potential biosignatures. See Attachmen
Report on the Workshop for Life Detection in Samples from Mars
The question of whether there is or was life on Mars has been one of the most pivotal since Schiaparellis’ telescopic observations of the red planet. With the advent of the space age, this question can be addressed directly by exploring the surface of Mars and by bringing samples to Earth for analysis. The latter, however, is not free of problems. Life can be found virtually everywhere on Earth. Hence the potential for contaminating the Mars samples and compromising their scientific integrity is not negligible. Conversely, if life is present in samples from Mars, this may represent a potential source of extraterrestrial biological contamination for Earth. A range of measures and policies, collectively termed ‘planetary protection’, are employed to minimise risks and thereby prevent undesirable consequences for the terrestrial biosphere. This report documents discussions and conclusions from a workshop held in 2012, which followed a public conference focused on current capabilities for performing life-detection studies on Mars samples. The workshop focused on the evaluation of Mars samples that would maximise scientific productivity and inform decision making in the context of planetary protection. Workshop participants developed a strong consensus that the same measurements could be employed to effectively inform both science and planetary protection, when applied in the context of two competing hypotheses: 1) that there is no detectable life in the samples; or 2) that there is martian life in the samples. Participants then outlined a sequence for sample processing and defined analytical methods that would test these hypotheses. They also identified critical developments to enable the analysis of samples from Mars