3 research outputs found

    Impact of sarcopenia and frailty in a multicenter cohort of polypathological patients

    Get PDF
    The prevalence, relationships and outcomes of sarcopenia and frailty in polypathological patients remain unknown. We performed a multicenter prospective observational study in six hospitals in order to assess prevalence, clinical features, outcome and associated risk factors of sarcopenia and frailty in a hospital-based population of polypathological patients. The cohort was recruited by performing prevalence surveys every 14 days during the inclusion period (March 2012-June 2016). Sarcopenia was assessed by means of EWGSOP criteria and frailty by means of Fried''s criteria. Skeletal muscle mass was measured by tetrapolar bioimpedanciometry. All patients were followed for 12 months. Factors associated with sarcopenia, frailty and mortality were analyzed by multivariate logistic regression, and Kaplan-Meier curves. A total of 444 patients (77.3 +/- 8.4 years, 55% males) were included. Sarcopenia was present in 97 patients (21.8%), this being moderate in 54 (12.2%), and severe in 43 (9.6%); frailty was present in 278 patients (62.6%), and 140 (31.6%) were pre-frail; combined sarcopenia and frailty were present in the same patient in 80 (18%) patients. Factors independently associated to the presence of both, sarcopenia and frailty were female gender, older age, different chronic conditions, poor functional status, low body mass index, asthenia and depressive disorders, and low leucocytes and lymphocytes count. Mortality in the 12-months follow-up period was 40%. Patients with sarcopenia, frailty or both survived significantly less than those without these conditions. Sarcopenia and frailty are frequent and interrelated conditions in polypathological patients, shadowing their survival. Their early recognition and management could improve health-related outcomes in this population

    Conservation of Aging and Cancer Epigenetic Signatures across Human and Mouse

    Get PDF
    Aging and cancer are two interrelated processes, with aging being a major risk factor for the development of cancer. Parallel epigenetic alterations have been described for both, although differences, especially within the DNA hypomethylation scenario, have also been recently reported. Although many of these observations arise from the use of mouse models, there is a lack of systematic comparisons of human and mouse epigenetic patterns in the context of disease. However, such comparisons are significant as they allow to establish the extent to which some of the observed similarities or differences arise from pre-existing species-specific epigenetic traits. Here, we have used reduced representation bisulfite sequencing to profile the brain methylomes of young and old, tumoral and nontumoral brain samples from human and mouse. We first characterized the baseline epigenomic patterns of the species and subsequently focused on the DNA methylation alterations associated with cancer and aging. Next, we described the functional genomic and epigenomic context associated with the alterations, and finally, we integrated our data to study interspecies DNA methylation levels at orthologous CpG sites. Globally, we found considerable differences between the characteristics of DNA methylation alterations in cancer and aging in both species. Moreover, we describe robust evidence for the conservation of the specific cancer and aging epigenomic signatures in human and mouse. Our observations point toward the preservation of the functional consequences of these alterations at multiple levels of genomic regulation. Finally, our analyses reveal a role for the genomic context in explaining disease- and species-specific epigenetic traits

    Intraoperative positive end-expiratory pressure and postoperative pulmonary complications: a patient-level meta-analysis of three randomised clinical trials.

    No full text
    corecore