7 research outputs found

    Skin infection by Corynebacterium diphtheriae and Streptococcus pyogenes: an unusual association

    Get PDF
    Corynebacterium diphtheriae is a noncapsulated, club-shaped facultative anaerobic Gram-positive bacilli. Opportunistic or cutaneous co-infection caused by this microorganism, especially non-toxigenic strains, has become important in travellers

    Incidence of co-infections and superinfections in hospitalised patients with COVID-19: a retrospective cohort study

    Get PDF
    Objectives: To describe the burden, epidemiology and outcomes of co-infections and superinfections occurring in hospitalized patients with coronavirus disease 2019 (COVID-19). Methods: We performed an observational cohort study of all consecutive patients admitted for ≥48 hours to the Hospital Clinic of Barcelona for COVID-19 (28 February to 22 April 2020) who were discharged or dead. We describe demographic, epidemiologic, laboratory and microbiologic results, as well as outcome data retrieved from electronic health records. Results: Of a total of 989 consecutive patients with COVID-19, 72 (7.2%) had 88 other microbiologically confirmed infections: 74 were bacterial, seven fungal and seven viral. Community-acquired co-infection at COVID-19 diagnosis was uncommon (31/989, 3.1%) and mainly caused by Streptococcus pneumoniae and Staphylococcus aureus. A total of 51 hospital-acquired bacterial superinfections, mostly caused by Pseudomonas aeruginosa and Escherichia coli, were diagnosed in 43 patients (4.7%), with a mean (SD) time from hospital admission to superinfection diagnosis of 10.6 (6.6) days. Overall mortality was 9.8% (97/989). Patients with community-acquired co-infections and hospital-acquired superinfections had worse outcomes. Conclusions: Co-infection at COVID-19 diagnosis is uncommon. Few patients developed superinfections during hospitalization. These findings are different compared to those of other viral pandemics. As it relates to hospitalized patients with COVID-19, such findings could prove essential in defining the role of empiric antimicrobial therapy or stewardship strategies

    Prediction of poor outcome in clostridioides difficile infection: A multicentre external validation of the toxin B amplification cycle

    Get PDF
    Producción CientíficaClassification of patients according to their risk of poor outcomes in Clostridioides difficile infection (CDI) would enable implementation of costly new treatment options in a subset of patients at higher risk of poor outcome. In a previous study, we found that low toxin B amplification cycle thresholds (Ct) were independently associated with poor outcome CDI. Our objective was to perform a multicentre external validation of a PCR-toxin B Ct as a marker of poor outcome CDI. We carried out a multicentre study (14 hospitals) in which the characteristics and outcome of patients with CDI were evaluated. A subanalysis of the results of the amplification curve of real-time PCR gene toxin B (XpertTM C. difficile) was performed. A total of 223 patients were included. The median age was 73.0 years, 50.2% were female, and the median Charlson index was 3.0. The comparison of poor outcome and non–poor outcome CDI episodes revealed, respectively, the following results: median age (years), 77.0 vs 72.0 (p = 0.009); patients from nursing homes, 24.4% vs 10.8% (p = 0.039); median leukocytes (cells/μl), 10,740.0 vs 8795.0 (p = 0.026); and median PCR-toxin B Ct, 23.3 vs 25.4 (p = 0.004). Multivariate analysis showed that a PCR-toxin B Ct cut-off <23.5 was significantly and independently associated with poor outcome CDI (p = 0.002; OR, 3.371; 95%CI, 1.565–7.264). This variable correctly classified 68.5% of patients. The use of this microbiological marker could facilitate early selection of patients who are at higher risk of poor outcome and are more likely to benefit from newer and more costly therapeutic options

    Implementation of a New Protocol for Direct Identification from Urine in the Routine Microbiological Diagnosis

    Full text link
    The direct identification of uropathogens from urine samples, in combination with the rapid detection of resistance, would allow early adjustment of empirical antimicrobial treatment.Two hundred and ninety-eight urine samples processed between 1 June and 31 December 2020, selected with flow cytometry, with direct identification by MALDI-TOF mass spectrometry, and rapid detection of extended-spectrum beta-lactamase (ESBL) and carbapenemases-producing strains by lateral flow were analyzed.The positive predictive value of the direct identification of the 86 samples that met the flow cytometry criterion (>5000 bacteria/µL) was 96.4%. Reliable direct identification was obtained in 14 of the 27 (51.8%) urinary source bacteraemias. There was 100% agreement between the lateral flow and antibiogram in the detection of ESBL and carbapenemases.the protocol for the direct identification and rapid detection of ESBL and carbapenemases-producing strains from urine samples is a reliable and useful tool

    In Vitro Effect of Three-Antibiotic Combinations plus Potential Antibiofilm Agents against Biofilm-Producing <i>Mycobacterium avium</i> and <i>Mycobacterium intracellulare</i> Clinical Isolates

    No full text
    Patients with chronic pulmonary diseases infected by Mycobacterium avium complex (MAC) often develop complications and suffer from treatment failure due to biofilm formation. There is a lack of correlation between in vitro susceptibility tests and the treatment of clinical isolates producing biofilm. We performed susceptibility tests of 10 different three-drug combinations, including two recommended in the guidelines, in biofilm forms of eight MAC clinical isolates. Biofilm developed in the eight isolates following incubation of the inoculum for 3 weeks. Then, the biofilm was treated with three-drug combinations with and without the addition of potential antibiofilm agents (PAAs). Biofilm bactericidal concentrations (BBCs) were determined using the Vizion lector system. All selected drug combinations showed synergistic activity, reducing BBC values compared to those treated with single drugs, but BBC values remained high enough to treat patients. However, with the addition of PAAs, the BBCs steadily decreased, achieving similar values to the combinations in planktonic forms and showing synergistic activity in all the combinations and in both species. In conclusion, three-drug combinations with PAAs showed synergistic activity in biofilm forms of MAC isolates. Our results suggest the need for clinical studies introducing PAAs combined with antibiotics for the treatment of patients with pulmonary diseases infected by MAC

    Differences in Drug-Susceptibility Patterns between <i>Mycobacterium avium</i>, <i>Mycobacterium intracellulare</i>, and <i>Mycobacterium chimaera</i> Clinical Isolates: Prospective 8.5-Year Analysis by Three Laboratories

    No full text
    Background: It has been suggested that Mycobacterium avium, Mycobacterium intracellulare, and M. chimaera have differential drug susceptibility patterns. We prospectively analyzed and compared the drug susceptibility patterns among these species over an 8.5-year period. Methods: A microdilution method (Slomyco®) was performed for drug susceptibility testing of 402 M. avium, 273 M. intracellulare, and 139 M. chimaera clinical isolates. Results: M. avium showed significantly higher resistance to moxifloxacin, ciprofloxacin, rifampicin, ethambutol, streptomycin, linezolid, cotrimoxazole, and clarithromycin. M. avium also showed higher minimum inhibitory concentrations (MIC) than M. intracellulare and M. chimaera against all drugs except ethionamide, to which M. intracellulare and M. chimaera showed greater resistance. Conclusions: Our series demonstrated differential drug resistance patterns among the most frequent M. avium complex species. M. avium was more resistant than M. intracellulare and M. chimaera versus eight antibiotics and showed greater MIC values to most of the antibiotics studied. These data suggest that knowledge of the local distribution and susceptibility profiles of these pathogens is essential for adequate clinical management
    corecore