9 research outputs found

    Estimation of partial least squares regression prediction uncertainty when the reference values carry a sizeable measurement error

    No full text
    The prediction uncertainty is studied when using a multivariate partial least squares regression (PLSR) model constructed with reference values that contain a sizeable measurement error. Several approximate expressions for calculating a sample-specific standard error of prediction have been proposed in the literature. In addition, Monte Carlo simulation methods such as the bootstrap and the noise addition method can give an estimate of this uncertainty. In this paper, two approximate expressions are compared with the simulation methods for three near-infrared data sets

    Online detection and quatification of ergot bodies in cereals using near infrared hyperspectral imaging

    No full text
    The occurrence of ergot bodies (sclerotia of Claviceps purpurea) in cereals presents a high toxicity risk for animals and humans due to the alkaloid content. To reduce this risk, the European Commission fixed an ergot concentration limit of 0.1% in all feedstuffs containing unground cereals, and a limit of 0.05% in ‘intervention’ cereals destined for humans. This study sought to develop a procedure based on near infrared hyperspectral imaging and multivariate image analysis to detect and quantify ergot contamination in cereals. Hyperspectral images were collected using an NIR hyperspectral line scan combined with a conveyor belt. All images consisted of lines of 320 pixels that were acquired at 209 wavelength channels (1100–2400¿nm). To test the procedure, several wheat samples with different levels of ergot contamination were prepared. The results showed a correlation higher than 0.99 between the predicted values obtained using chemometric tools such as partial least squares discriminant analysis or support vector machine and the reference values. For a wheat sample with a level of ergot contamination as low as 0.01 %, it was possible to identify groups of pixels detected as ergot to conclude that the sample was contaminated. In addition, no false positives were obtained with non-contaminated samples. The limit of detection was found to be 145¿mg/kg and the limit of quantification 341¿mg/kg. The reproducibility tests of the measurements performed over several weeks showed that the results were always within the limits allowed. Additional studies were done to optimise the parameters in terms of number of samples analysed per unit of time or conveyor belt speed. It was shown that ergot can be detected using a speed of 1–100¿mm/s and that a sample of 250¿g can be analysed in 1¿mi

    Online detection and quatification of ergot bodies in cereals using near infrared hyperspectral imaging

    No full text
    The occurrence of ergot bodies (sclerotia of Claviceps purpurea) in cereals presents a high toxicity risk for animals and humans due to the alkaloid content. To reduce this risk, the European Commission fixed an ergot concentration limit of 0.1% in all feedstuffs containing unground cereals, and a limit of 0.05% in ‘intervention’ cereals destined for humans. This study sought to develop a procedure based on near infrared hyperspectral imaging and multivariate image analysis to detect and quantify ergot contamination in cereals. Hyperspectral images were collected using an NIR hyperspectral line scan combined with a conveyor belt. All images consisted of lines of 320 pixels that were acquired at 209 wavelength channels (1100–2400¿nm). To test the procedure, several wheat samples with different levels of ergot contamination were prepared. The results showed a correlation higher than 0.99 between the predicted values obtained using chemometric tools such as partial least squares discriminant analysis or support vector machine and the reference values. For a wheat sample with a level of ergot contamination as low as 0.01 %, it was possible to identify groups of pixels detected as ergot to conclude that the sample was contaminated. In addition, no false positives were obtained with non-contaminated samples. The limit of detection was found to be 145¿mg/kg and the limit of quantification 341¿mg/kg. The reproducibility tests of the measurements performed over several weeks showed that the results were always within the limits allowed. Additional studies were done to optimise the parameters in terms of number of samples analysed per unit of time or conveyor belt speed. It was shown that ergot can be detected using a speed of 1–100¿mm/s and that a sample of 250¿g can be analysed in 1¿mi

    Assessment of pesticide coating on cereal seeds by near infrared hyperspectral imaging

    No full text
    Seed treatment with pesticides requires the active substances to be applied at the target rate and homogeneously distributed between seeds of the same batch. Indeed, a lower dose may lead to insufficient plant protection while an overdose can increase the risk of phytotoxicity. Nowadays, chromatographic methods, such as ultra performance liquid chromatography (UPLC), are the preferred reference methods for the quality control of the pesticide coating. They are selective, sensitive, accurate and repeatable, but also expensive, destructive and time consuming. Moreover, they require a substantial amount of solvent. Alternative methods that avoid these drawbacks are needed. In this context, near infrared (NIR) spectroscopy seems to be an interesting technique to control the quality of seed treatment. Several studies have shown the potential of vibrational spectroscopy to detect pesticide residues in food using NIR spectroscopy1 and Raman2 technology. The potential of NIR spectroscopy has also been demonstrated to classify active principles and to assess their concentration for the quality control of commercial pesticide formulations.3 Other studies4,5 have proved that NIR spectroscopy used with a see

    A method for non-destructive determination of cocoa bean fermentation levels based on Terahertz hyperspectral imaging

    No full text
    Fermentation of cocoa is a key process to obtain aromatic chocolate products from raw cocoa beans. Hitherto, the levels of fermentation in cocoa are determined using destructive techniques, for example by a cut-test to manually observe the colour inside the beans, or by quantifying ammonia nitrogen (NH3) in the cocoa powder. In this paper, we present the use of Terahertz hyperspectral imaging as a new way to non-destructively analyse and detect fermented cocoa beans. The study analysed two sets of twenty-two cocoa bean samples with different levels of fermentation from two producers in Brazil. A correlation between fermentation conditions and the outcome results of their THz measurements was observe

    Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network

    Full text link
    To manage negative energy balance and ketosis in dairy farms, rapid and cost-effective detection is needed. Among the milk biomarkers that could be useful for this purpose, acetone and β-hydroxybutyrate (BHB) have been proved as molecules of interest regarding ketosis and citrate was recently identified as an early indicator of negative energy balance. Because Fourier transform mid-infrared spectrometry can provide rapid and cost-effective predictions of milk composition, the objective of this study was to evaluate the ability of this technology to predict these biomarkers in milk. Milk samples were collected in commercial and experimental farms in Luxembourg, France, and Germany. Acetone, BHB, and citrate contents were determined by flow injection analysis. Milk mid-infrared spectra were recorded and standardized for all samples. After edits, a total of 548 samples were used in the calibration and validation data sets for acetone, 558 for BHB, and 506 for citrate. Acetone content ranged from 0.020 to 3.355 mmol/L with an average of 0.103 mmol/L; BHB content ranged from 0.045 to 1.596 mmol/L with an average of 0.215 mmol/L; and citrate content ranged from 3.88 to 16.12 mmol/L with an average of 9.04 mmol/L. Acetone and BHB contents were log-transformed and a part of the samples with low values was randomly excluded to approach a normal distribution. The 3 edited data sets were then randomly divided into a calibration data set (3/4 of the samples) and a validation data set (1/4 of the samples). Prediction equations were developed using partial least square regression. The coefficient of determination (R2) of cross-validation was 0.73 for acetone, 0.71 for BHB, and 0.90 for citrate with root mean square error of 0.248, 0.109, and 0.70 mmol/L, respectively. Finally, the external validation was performed and R2 obtained were 0.67 for acetone, 0.63 for BHB, and 0.86 for citrate, with respective root mean square error of validation of 0.196, 0.083, and 0.76 mmol/L. Although the practical usefulness of the equations developed should be further verified with other field data, results from this study demonstrated the potential of Fourier transform mid-infrared spectrometry to predict citrate content with good accuracy and to supply indicative contents of BHB and acetone in milk, thereby providing rapid and cost-effective tools to manage ketosis and negative energy balance in dairy farms.OptiMIR, COMPOMIL

    Near infrared reflectance spectroscopy for estimating soil characteristics valuable in the diagnosis of soil fertility

    Full text link
    Soil fertility diagnostics rely not only upon measurement of available nutrients but also upon the soil’s ability to retain these nutrients. Near-infrared reflectance spectroscopy (NIRS) is a rapid and non-destructive analytical technique which allows to simultaneously estimate standard soil characteristics and does not require use of chemicals. Previous studies showed that NIRS could be used in local contexts to predict soil properties. The main goal of our research is to build a methodological framework for the use of NIRS at a more global scale. The specific goals of this study were (i) to identify the best spectra treatment and processing –LOCAL versus GLOBAL regression- methods, (ii) to compare NIRS performances to standard chemical protocols and (iii) to evaluate the ability of NIRS to predict soil total organic carbon (TOC), total Nitrogen (TN), clay content and cationic exchange capacity (CEC) for a wide range of soil conditions. We scanned 1,300 samples representative of main soil types of Wallonia under crop, grassland or forest. Various sample preparations were tested prior to NIRS measurements. The most appropriate options were selected according to ANOVA analysis and multiple means comparisons of the spectra principal components. Fifteen pre-treatments were applied to a calibration set and the prediction accuracy was evaluated for GLOBAL and LOCAL modified partial least square (MPLS) regression models. The LOCAL MPLS calibrations showed very encouraging results for all the studied characteristics. On average, for crop soil samples, the prediction coefficient of variation (CVp) was close to 15% for TOC content, 7% for TN content, and 10% for clay content and CEC. The comparisons of repeatability and reproducibility of both NIRS and standard methods showed that NIRS is as reliable as reference methods. Prediction accuracy and technique repeatability allow the use of NIRS within the framework of the soil fertility evaluation and its replacement of standard protocols. LOCAL MPLS can be applied within global datasets, such as the International global soil spectral library. However, the performance of LOCAL MPLS is linked to the number of similar spectra in the dataset and more standard measurements are needed to characterize the least widespread soils
    corecore