47,445 research outputs found

    Fast ignition driven by quasi-monoenergetic ions: Optimal ion type and reduction of ignition energies with an ion beam array

    Get PDF
    Fast ignition of inertial fusion targets driven by quasi-monoenergetic ion beams is investigated by means of numerical simulations. Light and intermediate ions such as lithium, carbon, aluminium and vanadium have been considered. Simulations show that the minimum ignition energies of an ideal configuration of compressed Deuterium-Tritium are almost independent on the ion atomic number. However, they are obtained for increasing ion energies, which scale, approximately, as Z^2, where Z is the ion atomic number. Assuming that the ion beam can be focused into 10 {\mu}m spots, a new irradiation scheme is proposed to reduce the ignition energies. The combination of intermediate Z ions, such as 5.5 GeV vanadium, and the new irradiation scheme allows a reduction of the number of ions required for ignition by, roughly, three orders of magnitude when compared with the standard proton fast ignition scheme

    Modeling contact formation between atomic-sized gold tips via molecular dynamics

    Get PDF
    The formation and rupture of atomic-sized contacts is modelled by means of molecular dynamics simulations. Such nano-contacts are realized in scanning tunnelling microscope and mechanically controlled break junction experiments. These instruments routinely measure the conductance across the nano-sized electrodes as they are brought into contact and separated, permitting conductance traces to be recorded that are plots of conductance versus the distance between the electrodes. One interesting feature of the conductance traces is that for some metals and geometric configurations a jump in the value of the conductance is observed right before contact between the electrodes, a phenomenon known as jump-to-contact. This paper considers, from a computational point of view, the dynamics of contact between two gold nano-electrodes. Repeated indentation of the two surfaces on each other is performed in two crystallographic orientations of face-centred cubic gold, namely (001) and (111). Ultimately, the intention is to identify the structures at the atomic level at the moment of first contact between the surfaces, since the value of the conductance is related to the minimum cross-section in the contact region. Conductance values obtained in this way are determined using first principles electronic transport calculations, with atomic configurations taken from the molecular dynamics simulations serving as input structures.Comment: 6 pages, 4 figures, conference submissio

    A test generation framework for quiescent real-time systems

    Get PDF
    We present an extension of Tretmans theory and algorithm for test generation for input-output transition systems to real-time systems. Our treatment is based on an operational interpretation of the notion of quiescence in the context of real-time behaviour. This gives rise to a family of implementation relations parameterized by observation durations for quiescence. We define a nondeterministic (parameterized) test generation algorithm that generates test cases that are sound with respect to the corresponding implementation relation. Also, the test generation is exhaustive in the sense that for each non-conforming implementation a test case can be generated that detects the non-conformance

    Unitarity of the Leptonic Mixing Matrix

    Get PDF
    We determine the elements of the leptonic mixing matrix, without assuming unitarity, combining data from neutrino oscillation experiments and weak decays. To that end, we first develop a formalism for studying neutrino oscillations in vacuum and matter when the leptonic mixing matrix is not unitary. To be conservative, only three light neutrino species are considered, whose propagation is generically affected by non-unitary effects. Precision improvements within future facilities are discussed as well.Comment: Standard Model radiative corrections to the invisible Z width included. Some numerical results modified at the percent level. Updated with latest bounds on the rare tau decay. Physical conculsions unchange

    Phase operators, temporally stable phase states, mutually unbiased bases and exactly solvable quantum systems

    Full text link
    We introduce a one-parameter generalized oscillator algebra A(k) (that covers the case of the harmonic oscillator algebra) and discuss its finite- and infinite-dimensional representations according to the sign of the parameter k. We define an (Hamiltonian) operator associated with A(k) and examine the degeneracies of its spectrum. For the finite (when k < 0) and the infinite (when k > 0 or = 0) representations of A(k), we construct the associated phase operators and build temporally stable phase states as eigenstates of the phase operators. To overcome the difficulties related to the phase operator in the infinite-dimensional case and to avoid the degeneracy problem for the finite-dimensional case, we introduce a truncation procedure which generalizes the one used by Pegg and Barnett for the harmonic oscillator. This yields a truncated generalized oscillator algebra A(k,s), where s denotes the truncation order. We construct two types of temporally stable states for A(k,s) (as eigenstates of a phase operator and as eigenstates of a polynomial in the generators of A(k,s)). Two applications are considered in this article. The first concerns physical realizations of A(k) and A(k,s) in the context of one-dimensional quantum systems with finite (Morse system) or infinite (Poeschl-Teller system) discrete spectra. The second deals with mutually unbiased bases used in quantum information.Comment: Accepted for publication in Journal of Physics A: Mathematical and Theoretical as a pape
    corecore