20,188 research outputs found

    Obscuring Material around Seyfert Nuclei with Starbursts

    Get PDF
    The structure of obscuring matter in the environment of active galactic nuclei with associated nuclear starbursts is investigated using 3-D hydrodynamical simulations. Simple analytical estimates suggest that the obscuring matter with energy feedback from supernovae has a torus-like structure with a radius of several tens of parsecs and a scale height of about 10 pc. These estimates are confirmed by the fully non-linear numerical simulations, in which the multi-phase inhomogeneous interstellar matter and its interaction with the supernovae are consistently followed. The globally stable, torus-like structure is highly inhomogeneous and turbulent. To achieve the high column densities (> 10^{24} cm^{-2}) as suggested by observations of some Seyfert 2 galaxies with nuclear starbursts, the viewing angle should be larger than about 70 degree from the pole-on for a 10^8 solar mass massive black hole. Due to the inhomogeneous internal structure of the torus, the observed column density is sensitive to the line-of-sight, and it fluctuates by a factor of order 100. The covering fraction for N > 10^{23} cm^{-2} is about 0.4. The average accretion rate toward R < 1 pc is 0.4 solar mass/yr, which is boosted to twice that in the model without the energy feedback.Comment: ApJL in press (4 pages, 3 figures) A gziped ps file with high resolution figures is available at http://th.nao.ac.jp/~wada/AGN

    Superlens made of a metamaterial with extreme effective parameters

    Get PDF
    We propose a superlens formed by an ultra-dense array of crossed metallic wires. It is demonstrated that due to the anomalous interaction between crossed wires, the structured substrate is characterized by an anomalously high index of refraction and supports strongly confined guided modes with very short propagation wavelengths. It is theoretically proven that a planar slab of such structured material makes a superlens that may compensate for the attenuation introduced by free-space propagation and restore the subwavelength details of the source. The bandwidth of the proposed device can be quite significant since the response of the structured substrate is non-resonant. The theoretical results are fully supported by numerical simulations.Comment: Accepted for publication in Phys. Rev. B (in press

    The extended minimal geometric deformation of SU(NN) dark glueball condensates

    Full text link
    The extended minimal geometric deformation (EMGD) procedure, in the holographic membrane paradigm, is employed to model stellar distributions that arise upon self-interacting scalar glueball dark matter condensation. Such scalar glueballs are SU(NN) Yang-Mills hidden sectors beyond the Standard Model. Then, corrections to the gravitational wave radiation, emitted by SU(NN) EMGD dark glueball stars mergers, are derived, and their respective spectra are studied in the EMGD framework, due to a phenomenological brane tension with finite value. The bulk Weyl fluid that drives the EMGD is then proposed to be experimentally detected by enhanced windows at the eLISA and LIGO.Comment: 9 pages, 7 figure

    Extended quantum portrait of MGD black holes and information entropy

    Full text link
    The extended minimal geometric deformation (EMGD) is employed on the fluid membrane paradigm, to describe compact stellar objects as Bose--Einstein condensates (BEC) consisting of gravitons. The black hole quantum portrait, besides deriving a preciser phenomenological bound for the fluid brane tension, is then scrutinized from the point of view of the configurational entropy. It yields a range for the critical density of the EMGD BEC, whose configurational entropy has global minima suggesting the configurational stability of the EMGD BEC.Comment: 9 pages, 7 figures, matches the published versio

    Nonequilibrium scaling explorations on a 2D Z(5)-symmetric model

    Get PDF
    We have investigated the dynamic critical behavior of the two-dimensional Z(5)-symmetric spin model by using short-time Monte Carlo (MC) simulations. We have obtained estimates of some critical points in its rich phase diagram and included, among the usual critical lines the study of first-order (weak) transition by looking into the order-disorder phase transition. Besides, we also investigated the soft-disorder phase transition by considering empiric methods. A study of the behavior of β/νz\beta /\nu z along the self-dual critical line has been performed and special attention has been devoted to the critical bifurcation point, or FZ (Fateev-Zamolodchikov) point. Firstly, by using a refinement method and taking into account simulations out-of-equilibrium, we were able to localize parameters of this point. In a second part of our study, we turned our attention to the behavior of the model at the early stage of its time evolution in order to find the dynamic critical exponent z as well as the static critical exponents β\beta and % \nu of the FZ-point on square lattices. The values of the static critical exponents and parameters are in good agreement with the exact results, and the dynamic critical exponent z2.28z\approx 2.28 very close of the 4-state Potts model (z2.29z\approx 2.29).Comment: 11 pages, 7 figure
    corecore