75 research outputs found

    Interactive situation modelling in knowledge intensive domains

    Get PDF
    Interactive Situation Modelling (ISM) method, a semi-methodological approach, is proposed to tackle issues associated with modelling complex knowledge intensive domains, which cannot be easily modelled using traditional approaches. This paper presents the background and implementation of ISM within a complex domain, where synthesizing knowledge from various sources is critical, and is based on the principles of ethnography within a constructivist framework. Although the motivation for the reported work comes from the application presented in the paper, the actual scope of the paper covers a wide range of issues related to modelling complex systems. The author firstly reviews approaches used for modelling knowledge intensive domains, preceded by a brief discussion about two main issues: symmetry of ignorance and system behaviour, which are often confronted when applying modelling approaches to business domains. The ISM process is then characterized and critiqued with lessons from an exemplar presented to illustrate its effectiveness.

    Utilising a simulation platform to understand the effect of domain model assumptions

    Get PDF
    © The Author(s) 2014. This article is published with open access at Springerlink.com. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Computational and mathematical modelling approaches are increasingly being adopted in attempts to further our understanding of complex biological systems. This approach can be subjected to strong criticism as substantial aspects of the biological system being captured are not currently known, meaning assumptions need to be made that could have a critical impact on simulation response. We have utilised the CoSMoS process in the development of an agent-based simulation of the formation of Peyer's patches (PP), gut-associated lymphoid organs that have a key role in the initiation of adaptive immune responses to infection. Although the use of genetic tools, imaging technologies and ex vivo culture systems has provided significant insight into the cellular components and associated pathways involved in PP development, interesting questions remain that cannot be addressed using these approaches, and as such well justified assumptions have been introduced into our model to counter this. Here we focus not on the development of the model itself, but instead demonstrate how the resultant simulation can be used to assess how these assumptions impact the simulation response. For example, we consider the impact of our assumption that the migration rate of lymphoid tissue cells into the gut remains constant throughout PP development. We demonstrate that an analysis of the assumptions made in the construction of the domain model may either increase confidence in the model as a representation of the biological system it captures, or may suggest areas where further biological experimentation is required.This work was funded by the Wellcome Trust [ref:097829] through the Centre for Chronic Diseases and Disorders (C2D2) at the University of York. Paul Andrews is funded by EPSRC grant EP/I005943/1 “Resilient Futures.” Henrique Veiga-Fernandes is funded by Fundação para a Ciência e Tecnologia (PTDC/SAU-MII/100016/2008), Portugal, European Molecular Biology Organisation (Project 1648) and European Research Council (Project 207057). Jon Timmis is part funded by the Royal Society and the Royal Academy of Engineering. Funding for Mark Coles comes from grants from the Human Frontiers Science Program (RGP0006/2009) and the Medical Research Council (G0601156).info:eu-repo/semantics/publishedVersio

    Estimating the wider value generated by UNESCO’s designations in the United Kingdom

    Get PDF
    In September 2015, the United Nations General Assembly adopted a set of objectives related to promoting and supporting sustainable development around the globe through education, human knowledge, communication and culture. These objectives are commonly known as the Sustainable Development Goals (SDGs) and are an inter-dependent set of 17 goals that 195 Member States have agreed to achieve by 2030. As a specialised agency of the United Nations, and the global lead on education, UNESCO has a vital role to play in delivering the SDGs. UNESCO’s global network of 'designations', including World Heritage Sites, Biosphere Reserves, UNESCO University Chair Programme, and Global Geoparks, also play an essential role in promoting and supporting local sustainable development and achieving the SDGs. However, the different geographic, cultural and political regimes under which UNESCO designations are called to operate, pose significant challenges for the network to effectively be managed and contribute towards the SDGs. Moreover, the heterogeneity of organisational structures and boundaries in terms of efficiency, power and competence, prevents UNESCO designations "value-added" activities from reaching their full potential. We performed a survey of 74 designations in England, Northern Ireland, Scotland and Wales. Drawing from the business model component framework, our research aims to i) identify value generating configurations of organisational structures that transcend designations’ type, ii) estimate the value generated by the designation and their contribution to UNESCO’s SDGs; and, iii) develop a framework that can be used by national governments to make sense of UNESCO’s value generated activities. The framework can help UNESCO’s National Commissions to improve the efficient management of the designation’s global network and allow countries with different levels of economic and societal development to cooperate to tackle contemporary global challenges

    A strategic roadmap for BM change for the video-games industry

    Get PDF
    The global video games industry has experienced and exponential growth in terms of socioeconomic impact during the last 50 years. Surprisingly, little academic interest is directed towards the industry, particularly in the context of BM Change. As a technologically intensive creative industry, developing studios and publishers experience substantial internal and external forces to identify, and sustain, their competitive advantage. To achieve that, managers are called to systematically explore and exploit, alternative BMs that are compatible with the company’s strategy. We build on empirical analysis of the video-games industry to construct a Toolkit that i) will help practitioners and academics to describe the industrial ecosystem of BMs more accurately, and ii) use it a strategic roadmap for managers to navigate through alternatives for entrepreneurial and growth purposes

    Extending and Applying Spartan to Perform Temporal Sensitivity Analyses for Predicting Changes in Influential Biological Pathways in Computational Models

    Get PDF
    Through integrating real time imaging, computational modelling, and statistical analysis approaches, previous work has suggested that the induction of and response to cell adhesion factors is the key initiating pathway in early lymphoid tissue development, in contrast to the previously accepted view that the process is triggered by chemokine mediated cell recruitment. These model derived hypotheses were developed using spartan, an open-source sensitivity analysis toolkit designed to establish and understand the relationship between a computational model and the biological system that model captures. Here, we extend the functionality available in spartan to permit the production of statistical analyses that contrast the behavior exhibited by a computational model at various simulated time-points, enabling a temporal analysis that could suggest whether the influence of biological mechanisms changes over time. We exemplify this extended functionality by using the computational model of lymphoid tissue development as a time-lapse tool. By generating results at twelve- hour intervals, we show how the extensions to spartan have been used to suggest that lymphoid tissue development could be biphasic, and predict the time-point when a switch in the influence of biological mechanisms might occur

    Using argument notation to engineer biological simulations with increased confidence

    Get PDF
    The application of computational and mathematical modelling to explore the mechanics of biological systems is becoming prevalent. To significantly impact biological research, notably in developing novel therapeutics, it is critical that the model adequately represents the captured system. Confidence in adopting in silico approaches can be improved by applying a structured argumentation approach, alongside model development and results analysis. We propose an approach based on argumentation from safety-critical systems engineering, where a system is subjected to a stringent analysis of compliance against identified criteria. We show its use in examining the biological information upon which a model is based, identifying model strengths, highlighting areas requiring additional biological experimentation and providing documentation to support model publication. We demonstrate our use of structured argumentation in the development of a model of lymphoid tissue formation, specifically Peyer's Patches. The argumentation structure is captured using Artoo (www.york.ac.uk/ycil/software/artoo), our Web-based tool for constructing fitness-for-purpose arguments, using a notation based on the safety-critical goal structuring notation. We show how argumentation helps in making the design and structured analysis of a model transparent, capturing the reasoning behind the inclusion or exclusion of each biological feature and recording assumptions, as well as pointing to evidence supporting model-derived conclusions

    To what extent can decommissioning options for marine artificial structures move us toward environmental targets?

    Get PDF
    Switching from fossil fuels to renewable energy is key to international energy transition efforts and the move toward net zero. For many nations, this requires decommissioning of hundreds of oil and gas infrastructure in the marine environment. Current international, regional and national legislation largely dictates that structures must be completely removed at end-of-life although, increasingly, alternative decommissioning options are being promoted and implemented. Yet, a paucity of real-world case studies describing the impacts of decommissioning on the environment make decision-making with respect to which option(s) might be optimal for meeting international and regional strategic environmental targets challenging. To address this gap, we draw together international expertise and judgment from marine environmental scientists on marine artificial structures as an alternative source of evidence that explores how different decommissioning options might ameliorate pressures that drive environmental status toward (or away) from environmental objectives. Synthesis reveals that for 37 United Nations and Oslo-Paris Commissions (OSPAR) global and regional environmental targets, experts consider repurposing or abandoning individual structures, or abandoning multiple structures across a region, as the options that would most strongly contribute toward targets. This collective view suggests complete removal may not be best for the environment or society. However, different decommissioning options act in different ways and make variable contributions toward environmental targets, such that policy makers and managers would likely need to prioritise some targets over others considering political, social, economic, and ecological contexts. Current policy may not result in optimal outcomes for the environment or society

    Developing expert scientific consensus on the environmental and societal effects of marine artificial structures prior to decommissioning

    Get PDF
    This work was supported by the UK Natural Environment Research Council and the INSITE programme [INSITE SYNTHESIS project, grant number NE/W009889/1].Thousands of artificial (‘human-made’) structures are present in the marine environment, many at or approaching end-of-life and requiring urgent decisions regarding their decommissioning. No consensus has been reached on which decommissioning option(s) result in optimal environmental and societal outcomes, in part, owing to a paucity of evidence from real-world decommissioning case studies. To address this significant challenge, we asked a worldwide panel of scientists to provide their expert opinion. They were asked to identify and characterise the ecosystem effects of artificial structures in the sea, their causes and consequences, and to identify which, if any, should be retained following decommissioning. Experts considered that most of the pressures driving ecological and societal effects from marine artificial structures (MAS) were of medium severity, occur frequently, and are dependent on spatial scale with local-scale effects of greater magnitude than regional effects. The duration of many effects following decommissioning were considered to be relatively short, in the order of days. Overall, environmental effects of structures were considered marginally undesirable, while societal effects marginally desirable. Experts therefore indicated that any decision to leave MAS in place at end-of-life to be more beneficial to society than the natural environment. However, some individual environmental effects were considered desirable and worthy of retention, especially in certain geographic locations, where structures can support improved trophic linkages, increases in tourism, habitat provision, and population size, and provide stability in population dynamics. The expert analysis consensus that the effects of MAS are both negative and positive for the environment and society, gives no strong support for policy change whether removal or retention is favoured until further empirical evidence is available to justify change to the status quo. The combination of desirable and undesirable effects associated with MAS present a significant challenge for policy- and decision-makers in their justification to implement decommissioning options. Decisions may need to be decided on a case-by-case basis accounting for the trade-off in costs and benefits at a local level.Publisher PDFPeer reviewe
    corecore