35 research outputs found

    Culturally valuable minority crops provide a succession of floral resources for flower visitors in traditional orchard gardens

    Get PDF
    Agricultural intensification typically has detrimental effects on pollinator communities, but diverse cropping systems that contain sequentially-flowering crops have the potential to benefit pollinators through the provision of additional floral resources. In this study we investigate the importance of cultivated flora for flower visitors in ten agricultural gardens in South Sinai, Egypt. Insect-flower interactions in gardens and unmanaged plots were surveyed across a four-month period in two environmentally distinct years (pre-flood and post-flood). Despite containing an equal abundance and diversity of wild plants as unmanaged habitat, gardens supported a higher abundance and diversity of flower visitors due to the additional presence of cultivated flora. Visitation networks exhibited dramatic intra-annual changes in composition, with cultivated plants becoming increasingly important in later months. Trends were highly conserved across 2 years despite highly contrasting rainfall. Several key crop species were strongly involved in shaping the structure of the networks, the majority of which were herbs with strong cultural significance (fennel, rosemary, mint) and grown incidentally alongside the primary orchard crops. Minority crops are frequently overlooked in agricultural systems due to their low economic value, but we show that they can have a dramatic influence upon the structure of visitation networks, increasing both pollinator abundance and diversity, and emphasising the link between cultural practices and biodiversity conservation

    Lablab purpureus—A Crop Lost for Africa?

    Get PDF
    In recent years, so-called ‘lost crops’ have been appraised in a number of reviews, among them Lablab purpureus in the context of African vegetable species. This crop cannot truly be considered ‘lost’ because worldwide more than 150 common names are applied to it. Based on a comprehensive literature review, this paper aims to put forward four theses, (i) Lablab is one of the most diverse domesticated legume species and has multiple uses. Although its largest agro-morphological diversity occurs in South Asia, its origin appears to be Africa. (ii) Crop improvement in South Asia is based on limited genetic diversity. (iii) The restricted research and development performed in Africa focuses either on improving forage or soil properties mostly through one popular cultivar, Rongai, while the available diversity of lablab in Africa might be under threat of genetic erosion. (iv) Lablab is better adapted to drought than common beans (Phaseolus vulgaris) or cowpea (Vigna unguiculata), both of which have been preferred to lablab in African agricultural production systems. Lablab might offer comparable opportunities for African agriculture in the view of global change. Its wide potential for adaptation throughout eastern and southern Africa is shown with a GIS (geographic information systems) approach

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules

    Biophysical interactions in tropical agroforestry systems

    Full text link
    sequential systems, simultaneous systems Abstract. The rate and extent to which biophysical resources are captured and utilized by the components of an agroforestry system are determined by the nature and intensity of interac-tions between the components. The net effect of these interactions is often determined by the influence of the tree component on the other component(s) and/or on the overall system, and is expressed in terms of such quantifiable responses as soil fertility changes, microclimate modification, resource (water, nutrients, and light) availability and utilization, pest and disease incidence, and allelopathy. The paper reviews such manifestations of biophysical interactions in major simultaneous (e.g., hedgerow intercropping and trees on croplands) and sequential (e.g., planted tree fallows) agroforestry systems. In hedgerow intercropping (HI), the hedge/crop interactions are dominated by soil fertility improvement and competition for growth resources. Higher crop yields in HI than in sole cropping are noted mostly in inherently fertile soils in humid and subhumid tropics, and are caused by large fertility improvement relative to the effects of competition. But, yield increases are rare in semiarid tropics and infertile acid soils because fertility improvement does not offse
    corecore