24 research outputs found
Effects of Exercise Training on Circulating and Skeletal Muscle Renin-Angiotensin System in Chronic Heart Failure Rats
Background: Accumulated evidence shows that the ACE-AngII-AT1 axis of the renin-angiotensin system (RAS) is markedly activated in chronic heart failure (CHF). Recent studies provide information that Angiotensin (Ang)-(1-7), a metabolite of AngII, counteracts the effects of AngII. However, this balance between AngII and Ang-(1-7) is still little understood in CHF. We investigated the effects of exercise training on circulating and skeletal muscle RAS in the ischemic model of CHF.Methods/Main Results: Male Wistar rats underwent left coronary artery ligation or a Sham operation. They were divided into four groups: 1) Sedentary Sham (Sham-S), 2) exercise-trained Sham (Sham-Ex), sedentary CHF (CHF-S), and exercise-trained CHF (CHF-Ex). Angiotensin concentrations and ACE and ACE2 activity in the circulation and skeletal muscle (soleus and plantaris) were quantified. Skeletal muscle ACE and ACE2 protein expression, and AT1, AT2, and Mas receptor gene expression were also evaluated. CHF reduced ACE2 serum activity. Exercise training restored ACE2 and reduced ACE activity in CHF. Exercise training reduced plasma AngII concentration in both Sham and CHF rats and increased the Ang-(1-7)/AngII ratio in CHF rats. CHF and exercise training did not change skeletal muscle ACE and ACE2 activity and protein expression. CHF increased AngII levels in both soleus and plantaris muscle, and exercise training normalized them. Exercise training increased Ang-(1-7) in the plantaris muscle of CHF rats. the AT1 receptor was only increased in the soleus muscle of CHF rats, and exercise training normalized it. Exercise training increased the expression of the Mas receptor in the soleus muscle of both exercise-trained groups, and normalized it in plantaris muscle.Conclusions: Exercise training causes a shift in RAS towards the Ang-(1-7)-Mas axis in skeletal muscle, which can be influenced by skeletal muscle metabolic characteristics. the changes in RAS circulation do not necessarily reflect the changes occurring in the RAS of skeletal muscle.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundacao ZerbiniCoordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)Univ São Paulo, Sch Med, Heart Inst InCor HCFMUSP, São Paulo, BrazilUniv São Paulo, Sch Phys Educ & Sport, São Paulo, BrazilUniv São Paulo, Inst Biomed Sci, Dept Physiol & Biophys, São Paulo, BrazilUniversidade Federal de São Paulo, Kidney & Hypertens Hosp, Div Nephrol, São Paulo, BrazilUniversidade Federal de São Paulo, Kidney & Hypertens Hosp, Div Nephrol, São Paulo, BrazilFAPESP: FAPESP-2010/50048-1Web of Scienc
Association of urinary 90 kDa angiotensin- converting enzyme with family history of hypertension and endothelial function in normotensive individuals
We described angiotensin-I-converting enzyme (ACE) isoforms with molecular masses of 190, 90, and 65 kDa in the urine of normotensive offspring of hypertensive subjects. Since they did not appear in equal amounts, we suggested that 90 kDa ACE might be a marker for hypertension. We evaluated the endothelial response in normotensive offspring with or without family history of hypertension and its association with the 90 kDa ACE in urine. Thirty-five normotensive subjects with a known family history of hypertension and 20 subjects without a family history of hypertension, matched for age, sex, body weight, and blood pressure, were included in the study. Endothelial function was assessed by ultrasound and a sample of urine was collected for determination of ACE isoforms. In the presence of a family history of hypertension and detection of 90 kDa ACE, we noted a maximal flow mediated dilation of 12.1 ± 5.0 vs 16.1 ± 6.0% in those without a previous history of hypertension and lacking urinary 90 kDa ACE (P < 0.05). In subjects with a family history of hypertension and presenting 90 kDa ACE, there were lower levels of HDL-cholesterol (P < 0.05) and higher levels of triglycerides (P < 0.05). Subjects with 90 kDa ACE irrespective of hypertensive history presented a trend for higher levels of triglycerides and HDL-cholesterol (P = 0.06) compared to subjects without 90 kDa ACE. Our data suggest that the 90 kDa ACE may be a marker for hypertension which may be related to the development of early atherosclerotic changes.Universidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Departamento de MedicinaFundação Oswaldo Ramos Universidade Federal de São Paulo (UNIFESP) e Hospital do Rim e Hipertensão Departamento de RadiologiaUNIFESP, EPM, Depto. de MedicinaFundação Oswaldo Ramos UNIFESP, e Hospital do Rim e Hipertensão Depto. de RadiologiaSciEL
Intra-Renal Angiotensin Levels Are Increased in High-Fructose Fed Rats in the Extracorporeal Renal Perfusion Model
Overconsumption of fructose leads to metabolic syndrome as a result of hypertension, insulin resistance, and hyperlipidemia. In this study, the renal function of animals submitted to high fructose intake was analyzed from weaning to adulthood using in vivo and ex vivo methods, being compared with a normal control group. We investigated in ex vivo model of the role of the renin Angiotensin system (RAS) in the kidney. The use of perfused kidney from animals submitted to 8-week fructose treatment showed that high fructose intake caused metabolic and cardiovascular alterations that were consistent with other studies. Moreover, the isolated perfused kidneys obtained from rats under high fructose diet showed a 33% increase in renal perfusion pressure throughout the experimental period due to increased renal vascular resistance and a progressive fall in the glomerular filtration rate, which reached a maximum of 64% decrease. Analysis of RAS peptides in the high fructose group showed a threefold increase in the renal concentrations of angiotensin I (Ang I) and a twofold increase in angiotensin II (Ang II) levels, whereas no change in angiotensin 1-7 (Ang 1-7) was observed when compared with the control animals. We did not detect changes in angiotensin converting enzyme (ACE) activity in renal tissues, but there is a tendency to decrease. These observations suggest that there are alternative ways of producing Ang II in this model. Chymase the enzyme responsible for Ang II formation direct from Ang I was increased in renal tissues in the fructose group, confirming the alternative pathway for the formation of this peptide. Neprilysin (NEP) the Ang 1-7 forming showed a significant decrease in activity in the fructose vs. control group, and a tendency of reduction in ACE2 activity. Thus, these results suggest that the Ang 1-7 vasodilator peptide formation is impaired in this model contributing with the increase of blood pressure. In summary, rats fed high fructose affect renal RAS, which may contribute to several deleterious effects of fructose on the kidneys and consequently an increase in blood pressure
Biochemical Analysis of Urine Samples from Diabetic and Hypertensive Patients without Renal Dysfunction Using Spectrophotometry and Raman Spectroscopy Techniques Aiming Classification and Diagnosis
The purpose of this study was to perform a comparative biochemical analysis between conventional spectrophotometry and Raman spectroscopy, techniques used for diagnoses, on the urine of healthy (CT) and diabetic and hypertensive patients (DM&HBP). Urine from 40 subjects (20 in the CT group and 20 in the DM&HBP group) was examined in a dispersive Raman spectrometer (an 830 nm excitation and a 350 mW power). The mean Raman spectra between both groups showed a significant difference in peaks of glucose; exploratory analysis by principal component analysis (PCA) identified spectral differences between the groups, with higher peaks of glucose and proteins in the DM&HBP group. A partial least squares (PLS) regression model estimated by the Raman data indicated the concentrations of urea, creatinine, glucose, phosphate, and total protein; creatinine and glucose were the biomarkers that presented the best correlation coefficient (r) between the two techniques analyzed (r = 0.68 and r = 0.98, respectively), both with eight latent variables (LVs) and a root mean square error of cross-validation (RMSecv) of 3.6 and 5.1 mmol/L (41 and 92 mg/dL), respectively. Discriminant analysis (PLS-DA) using the entire Raman spectra was able to differentiate the samples of the groups in the study, with a higher accuracy (81.5%) compared to the linear discriminant analysis (LDA) models using the concentration values of the spectrometric analysis (60.0%) and the concentrations predicted by the PLS regression (69.8%). Results indicated that spectral models based on PLS applied to Raman spectra may be used to distinguish subjects with diabetes and blood hypertension from healthy ones in urinalysis aimed at population screening
Atenção à saúde e qualidade de vida de professores em ensino remoto: Relato de experiência
Teaching is amongst the most health damaging professions. The sudden transition to remote learning during the Covid19 pandemic contributed to an increase in these symptoms, reducing the quality of life and well-being of this population. Taking that into consideration, the aim of this study is to report the experience of the extension project of Health Care for Teachers in Remote Teaching, carried out by QualiMack - Quality of Life and Health at Work Program, of the Center for Biological and Health Sciences of the Mackenzie Presbyterian University. Remote meetings were held based on Health Education, which consisted of 08 meetings for Guidance Groups and 12 for Relaxation Activities. Some material summarizing the main content of the activities proposed was created and disseminated with the purpose of self-instructional reinforcement. A hundred and seventy-six professors from the host institution and 113 from other institutions participated. The strategies increased the participants' health repertoire and contributed to the training and improvement of the team in multidisciplinary work and interaction with the community.
 A docência está entre as profissões de maior desgaste em saúde. A transição repentina para o ensino remoto durante a COVID-19 contribuiu para o aumento desses sintomas, gerando danos à qualidade de vida e bem-estar nesta população. Diante disto, o objetivo deste estudo é relatar a experiência do projeto extensionista de Atenção à Saúde do Professor em Ensino Remoto, realizado pelo QualiMack – Programa de Qualidade de Vida e Saúde no Trabalho, do Centro de Ciências Biológicas e da Saúde da Universidade Presbiteriana Mackenzie. Foram realizados encontros remotos baseados em Educação em Saúde, que consistiram em 8 encontros para Grupos de Orientação e 12, para Atividades de Relaxamento; criação e divulgação de peças autoinstrucionais de reforço. Participaram 176 docentes da instituição sede e 113 externos. As estratégias aumentaram o repertório em saúde dos participantes e contribuÃram com a capacitação e aprimoramento da equipe no trabalho multidisciplinar e interação com a comunidade
Diabetes induces changes of catecholamines in primary mesangial cells
Diabetes mellitus is a frequent cause of kidney function damage with diabetic nephropathy being predominantly related to glomerular dysfunction. Diabetes is capable of interfering with distinct hormonal systems, as well as catecholamine metabolism. Since mesangial cells, the major constituent of renal glomerulus, constitute a potential site for catecholamine production, the present study was carried out to investigate alterations in catecholamine metabolism in cultured mesangial cells from the nonobese diabetic mouse, a well-established model for type I diabetes. We evaluated mesangial cells from normoglycemic and hyperglycemic nonobese diabetic mice, as well as cells from normoglycemic Swiss tnice as control. Mesangial cells from normoglycemic mice presented similar profiles concerning all determinations. However, cells isolated from hyperglycemic animals presented increased dopamine and norepinephrine production/secretion. Among the studied mechanisms, we observed an upregulation of tyrosine hydroxylase expression accompanied by increased tetrahydrobiopterin consumption, the tyrosine hydroxylase enzymatic cofactor. However, this increase in synthetic pathways was followed by decreased monoamine oxidase activity, which corresponds to the major metabolic pathway of catecholamines in mesangial cells. in addition, Whole kidney homogenates from diabetic animals also presented increased dopamine and norepinephrine levels when compared to normoglycemic animals. Thus, our results suggest that diabetes alters catecholamine production by interfering with both synthesizing and degrading enzymes, suggesting a possible role of catecholamine in the pathogenesis of acute and chronic renal complications of diabetes mellitus. (C) 2007 Elsevier B.V. All rights reserved.Universidade Federal de São Paulo, Div Nephrol, Dept Med, BR-04023900 São Paulo, BrazilUniv Clin Muenster, D-48149 Munster, GermanyPontificia Univ Catolica Chile, Fac Ciencias Biol, Dept Physiol Sci, Santiago, ChileUniversidade Federal de São Paulo, Div Nephrol, Dept Med, BR-04023900 São Paulo, BrazilWeb of Scienc