61 research outputs found

    Varíola e vacina no Brasil no século XX: institucionalização da educação sanitária Smallpox and vaccine in Brazil at 20th century: institutionalization of health education

    No full text
    O objetivo deste texto é discutir algumas ações que possibilitaram a erradicação da varíola no Brasil, considerando os principais contextos e as políticas adotadas para as doenças entre 1920 e 1970, assumindo como destaque as medidas educativas no campo da saúde e estabelecendo uma discussão acerca do conteúdo educacional dos programas adotados. Observam-se, ao longo deste período, a configuração de políticas de saúde e a criação de organismos estatais direcionados a doenças e ações específicas, o que no caso da varíola somente ocorreu na década de 1960, quando foram criadas a Campanha Nacional contra a Varíola e a Campanha Nacional de Erradicação da Varíola. A educação sanitária e as relações com estas instituições foram de fundamental importância para a divulgação e implementação de ações estatais que possibilitaram ampliação da cobertura vacinal com a aceitação de seu uso pela população, o alcance do controle e a erradicação da doença.<br>The aim of this paper is to discuss some actions that made possible the eradication of smallpox in Brazil, considering the main contexts and policies adopted for the disease between 1920 and 1970, assuming as contrast educational measures in the field of health and establishing a discussion on the educational content of the programs adopted. It can be observed that, during this period, the setting of the health policies and the creation of state agencies that target specific diseases and actions, which in the case of the smallpox, only occurred in the 1960s, when the National Campaign against the Smallpox and the National Campaign for Eradication of Smallpox were created. Health education and the relations with these institutions were of fundamental importance to the dissemination and implementation of state actions that allowed the expansion of the vaccinal coverage with acceptance of its use by the population and the range of control and eradication of the disease

    Stigma and Discrimination faced by HIV-infected Adults on Antiretroviral Therapy for more than 1 Year in Raichur Taluk, Karnataka, India

    No full text

    Overview of the JET results

    No full text
    Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. \ua9 2011 IAEA, Vienna

    Overview of the JET results

    No full text
    Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. \ua9 2011 IAEA, Vienna

    Overview of the JET results

    No full text
    Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. \ua9 2011 IAEA, Vienna

    Overview of the JET results with the ITER-like wall

    No full text
    Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential

    Micro ion beam analysis for the erosion of beryllium marker tiles in a tokamak limiter

    No full text
    Beryllium limiter marker tiles were exposed to plasma in the Joint European Torus to diagnose the erosion of main chamber wall materials. A limiter marker tile consists of a beryllium coating layer (7-9 mu m) on the top of bulk beryllium, with a nickel interlayer (2-3 mu m) between them. The thickness variation of the beryllium coating layer, after exposure to plasma, could indicate the erosion measured by ion beam analysis with backscattering spectrometry. However, interpretations from broad beam backscattering spectra were limited by the non-uniform surface structures. Therefore, micro-ion beam analysis (mu-IBA) with 3 MeV proton beam for Elastic back scattering spectrometry (EBS) and PIXE was used to scan samples. The spot size was in the range of 3-10 mu m. Scanned areas were analysed with scanning electron microscopy (SEM) as well. Combining results from mu-IBA and SEM, we obtained local spectra from carefully chosen areas on which the surface structures were relatively uniform. Local spectra suggested that the scanned area (approximate to 600 mu m x 1200 mu m) contained regions with serious erosion with only 2-3 mu m coating beryllium left, regions with intact marker tile, and droplets with 90% beryllium. The nonuniform erosion, droplets mainly formed by beryllium, and the possible mixture of beryllium and nickel were the major reasons that confused interpretation from broad beam EBS

    Approximate analytic expressions using Stokes model for tokamak polarimetry and their range of validity

    No full text
    The analysis of the polarimetry measurements has the aim of validating models (De Marco and Segre 1972 Plasma Phys. 14 245), with a careful attention to the clarification of their limits of application. In this paper a new approximation method is introduced, the so-called special constant Omega direction (SCOD), which gives an analytical solution to the polarimetry exact Stokes model equations. The available approximate solutions (including SCOD) of the polarimetry propagation equations are presented, compared and their application limits determined, using a reference tokamak configuration, which is a simplified equilibrium for a circular tokamak. The SCOD approximation is compared successfully to the Stokes model in the context also of equilibria evaluated for two JET discharges. The approximation methods are analytical or very simple mathematical expressions which can also be used in equilibrium codes for their optimization
    corecore