55 research outputs found

    Ancestral diversity improves discovery and fine-mapping of genetic loci for anthropometric traits-The Hispanic/Latino Anthropometry Consortium

    Get PDF
    Hispanic/Latinos have been underrepresented in genome-wide association studies (GWAS) for anthropometric traits despite their notable anthropometric variability, ancestry proportions, and high burden of growth stunting and overweight/obesity. To address this knowledge gap, we analyzed densely imputed genetic data in a sample of Hispanic/Latino adults to identify and fine-map genetic variants associated with body mass index (BMI), height, and BMI-adjusted waist-to-hip ratio (WHRadjBMI). We conducted a GWAS of 18 studies/consortia as part of the Hispanic/Latino Anthropometry (HISLA) Consortium (stage 1, n = 59,771) and generalized our findings in 9 additional studies (stage 2, n = 10,538). We conducted a trans-ancestral GWAS with summary statistics from HISLA stage 1 and existing consortia of European and African ancestries. In our HISLA stage 1 + 2 analyses, we discovered one BMI locus, as well as two BMI signals and another height signal each within established anthropometric loci. In our trans-ancestral meta-analysis, we discovered three BMI loci, one height locus, and one WHRadjBMI locus. We also identified 3 secondary signals for BMI, 28 for height, and 2 for WHRadjBMI in established loci. We show that 336 known BMI, 1,177 known height, and 143 known WHRadjBMI (combined) SNPs demonstrated suggestive transferability (nominal significance and effect estimate directional consistency) in Hispanic/Latino adults. Of these, 36 BMI, 124 height, and 11 WHRadjBMI SNPs were significant after trait-specific Bonferroni correction. Trans-ancestral meta-analysis of the three ancestries showed a small-to-moderate impact of uncorrected population stratification on the resulting effect size estimates. Our findings demonstrate that future studies may also benefit from leveraging diverse ancestries and differences in linkage disequilibrium patterns to discover novel loci and additional signals with less residual population stratification

    Characterization of the contribution of shared environmental and genetic factors to metabolic syndrome methylation heritability and familial correlations

    Get PDF
    Abstract Background Transgenerational epigenetic inheritance has been posited as a possible contributor to the observed heritability of metabolic syndrome (MetS). Yet the extent to which estimates of epigenetic inheritance for DNA methylation sites are inflated by environmental and genetic covariance within families is still unclear. We applied current methods to quantify the environmental and genetic contributors to the observed heritability and familial correlations of four previously associated MetS methylation sites at three genes (CPT1A, SOCS3 and ABCG1) using real data made available through the GAW20. Results Our findings support the role of both shared environment and genetic variation in explaining the heritability of MetS and the four MetS cytosine-phosphate-guanine (CpG) sites, although the resulting heritability estimates were indistinguishable from one another. Familial correlations by type of relative pair generally followed our expectation based on relatedness, but in the case of sister and parent pairs we observed nonsignificant trends toward greater correlation than expected, as would be consistent with the role of shared environmental factors in the inflation of our estimated correlations. Conclusions Our work provides an interesting and flexible statistical framework for testing models of epigenetic inheritance in the context of human family studies. Future work should endeavor to replicate our findings and advance these methods to more robustly describe epigenetic inheritance patterns in human populations

    Demographic and sociocultural risk factors for adulthood weight gain in Hispanic/Latinos: results from the Hispanic Community Health Study / Study of Latinos (HCHS/SOL)

    Get PDF
    Background United States (US) Hispanic/Latinos experience a disproportionate burden of obesity, which may in part be related to demographic or sociocultural factors, including acculturation to an US diet or inactive lifestyle. Therefore, we sought to describe the association between adulthood weight histories and demographic and sociocultural factors in a large diverse community-based cohort of US Hispanic/Latinos. Methods We estimated the effect of several factors on weight gain across adulthood, using multivariable linear mixed models to leverage 38,759 self-reported current body weights and weight histories recalled for 21, 45 and 65 years of age, from 15,203 adults at least 21 years of age at the baseline visit of the Hispanic Community Health Study/Study of Latinos (2008–2011). Results The average rate of weight gain was nearly 10 kg per decade in early adulthood, but slowed to < 5 kg a decade among individuals 60+ years of age. Birth cohort, gender, nativity or age at immigration, Hispanic/Latino background, and study site each significantly modified the form of the predicted adulthood weight trajectory. Among immigrants, weight gain during the 5 years post-migration was on average 0.88 kg (95% CI: 0.04, 1.72) greater than the weight gain during the 5 years prior. The rate of weight gain appeared to slow after 15 years post-migration. Conclusions Using self-reported and weight history data in a diverse sample of US Hispanic/Latinos, we revealed that both demographic and sociocultural factors were associated with the patterning of adulthood weight gain in this sample. Given the steep rate of weight gain in this population and the fact that many Hispanic/Latinos living in the US immigrated as adults, efforts to promote weight maintenance across the life course, including after immigration, should be a top priority for promoting Hispanic/Latino health and addressing US health disparities more broadly

    Genome-wide association of trajectories of systolic blood pressure change

    Get PDF
    Abstract Background There is great interindividual variation in systolic blood pressure (SBP) as a result of the influences of several factors, including sex, ancestry, smoking status, medication use, and, especially, age. The majority of genetic studies have examined SBP measured cross-sectionally; however, SBP changes over time, and not necessarily in a linear fashion. Therefore, this study conducted a genome-wide association (GWA) study of SBP change trajectories using data available through the Genetic Analysis Workshop 19 (GAW19) of 959 individuals from 20 extended Mexican American families from the San Antonio Family Studies with up to 4 measures of SBP. We performed structural equation modeling (SEM) while taking into account potential genetic effects to identify how, if at all, to include covariates in estimating the SBP change trajectories using a mixture model based latent class growth modeling (LCGM) approach for use in the GWA analyses. Results The semiparametric LCGM approach identified 5 trajectory classes that captured SBP changes across age. Each LCGM identified trajectory group was ranked based on the average number of cumulative years as hypertensive. Using a pairwise comparison of these classes the heritability estimates range from 12 to 94 % (SE = 17 to 40 %). Conclusion These identified trajectories are significantly heritable, and we identified a total of 8 promising loci that influence one’s trajectory in SBP change across age. Our results demonstrate the potential utility of capitalizing on extant genetic data and longitudinal SBP assessments available through GAW19 to explore novel analytical methods with promising results

    Comparison of 2 models for gene–environment interactions: an example of simulated gene–medication interactions on systolic blood pressure in family-based data

    Get PDF
    Abstract Background Nearly half of adults in the United States who are diagnosed with hypertension use blood-pressure-lowering medications. Yet there is a large interindividual variability in the response to these medications. Two complementary gene–environment interaction methods have been published and incorporated into publicly available software packages to examine interaction effects, including whether genetic variants modify the association between medication use and blood pressure. The first approach uses a gene–environment interaction term to measure the change in outcome when both the genetic marker and medication are present (the “interaction model”). The second approach tests for effect-size differences between strata of an environmental exposure (the “med-diff” approach). However, no studies have quantitatively compared how these methods perform with respect to 1 or 2 degree of freedom (DF) tests or in family-based data sets. We evaluated these 2 approaches using simulated genotype–medication response interactions at 3 single nucleotide polymorphisms (SNPs) across a range of minor allele frequencies (MAFs 0.1–5.4 %) using the Genetic Analysis Workshop 19 family sample. Results The estimated interaction effect sizes were on average larger in the interaction model approach compared to the med-diff approach. The true positive proportion was higher for the med-diff approach for SNPs less than 1 % MAF, but higher for the interaction model when common variants were evaluated (MAF >5 %). The interaction model produced lower false-positive proportions than expected (5 %) across a range of MAFs for both the 1DF and 2DF tests. In contrast, the med-diff approach produced higher but stable false-positive proportions around 5 % across MAFs for both tests. Conclusions Although the 1DF tests both performed similarly for common variants, the interaction model estimated true interaction effects with less bias and higher true positive proportions than the med-diff approach. However, if rare variation (MAF <5 %) is of interest, our findings suggest that when convergence is achieved, the med-diff approach may estimate true interaction effects more conservatively and with less variability

    Genetic Variation and Reproductive Timing: African American Women from the Population Architecture Using Genomics and Epidemiology (PAGE) Study

    Get PDF
    Age at menarche (AM) and age at natural menopause (ANM) define the boundaries of the reproductive lifespan in women. Their timing is associated with various diseases, including cancer and cardiovascular disease. Genome-wide association studies have identified several genetic variants associated with either AM or ANM in populations of largely European or Asian descent women. The extent to which these associations generalize to diverse populations remains unknown. Therefore, we sought to replicate previously reported AM and ANM findings and to identify novel AM and ANM variants using the Metabochip (n = 161,098 SNPs) in 4,159 and 1,860 African American women, respectively, in the Women's Health Initiative (WHI) and Atherosclerosis Risk in Communities (ARIC) studies, as part of the Population Architecture using Genomics and Epidemiology (PAGE) Study. We replicated or generalized one previously identified variant for AM, rs1361108/CENPW, and two variants for ANM, rs897798/BRSK1 and rs769450/APOE, to our African American cohort. Overall, generalization of the majority of previously-identified variants for AM and ANM, including LIN28B and MCM8, was not observed in this African American sample. We identified three novel loci associated with ANM that reached significance after multiple testing correction (LDLR rs189596789, p = 5×10-08; KCNQ1 rs79972789, p = 1.9×10-07; COL4A3BP rs181686584, p = 2.9×10-07). Our most significant AM association was upstream of RSF1, a gene implicated in ovarian and breast cancers (rs11604207, p = 1.6×10-06). While most associations were identified in either AM or ANM, we did identify genes suggestively associated with both: PHACTR1 and ARHGAP42. The lack of generalization coupled with the potentially novel associations identified here emphasize the need for additional genetic discovery efforts for AM and ANM in diverse populations. © 2013 Spencer et al

    Genetic Diversity and Association Studies in US Hispanic/Latino Populations: Applications in the Hispanic Community Health Study/Study of Latinos

    Get PDF
    US Hispanic/Latino individuals are diverse in genetic ancestry, culture, and environmental exposures. Here, we characterized and controlled for this diversity in genome-wide association studies (GWASs) for the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). We simultaneously estimated population-structure principal components (PCs) robust to familial relatedness and pairwise kinship coefficients (KCs) robust to population structure, admixture, and Hardy-Weinberg departures. The PCs revealed substantial genetic differentiation within and among six self-identified background groups (Cuban, Dominican, Puerto Rican, Mexican, and Central and South American). To control for variation among groups, we developed a multi-dimensional clustering method to define a “genetic-analysis group” variable that retains many properties of self-identified background while achieving substantially greater genetic homogeneity within groups and including participants with non-specific self-identification. In GWASs of 22 biomedical traits, we used a linear mixed model (LMM) including pairwise empirical KCs to account for familial relatedness, PCs for ancestry, and genetic-analysis groups for additional group-associated effects. Including the genetic-analysis group as a covariate accounted for significant trait variation in 8 of 22 traits, even after we fit 20 PCs. Additionally, genetic-analysis groups had significant heterogeneity of residual variance for 20 of 22 traits, and modeling this heteroscedasticity within the LMM reduced genomic inflation for 19 traits. Furthermore, fitting an LMM that utilized a genetic-analysis group rather than a self-identified background group achieved higher power to detect previously reported associations. We expect that the methods applied here will be useful in other studies with multiple ethnic groups, admixture, and relatedness

    Complex patterns of direct and indirect association between the transcription Factor-7 like 2 gene, body mass index and type 2 diabetes diagnosis in adulthood in the Hispanic Community Health Study/Study of Latinos

    Get PDF
    Abstract Background Genome-wide association studies have implicated the transcription factor 7-like 2 (TCF7L2) gene in type 2 diabetes risk, and more recently, in decreased body mass index. Given the contrary direction of genetic effects on these two traits, it has been suggested that the observed association with body mass index may reflect either selection bias or a complex underlying biology at TCF7L2. Methods Using 9031 Hispanic/Latino adults (21–76 years) with complete weight history and genetic data from the community-based Hispanic Community Health Study/Study of Latinos (HCHS/SOL, Baseline 2008–2011), we estimated the multivariable association between the additive number of type 2 diabetes increasing-alleles at TCF7L2 (rs7903146-T) and body mass index. We then used structural equation models to simultaneously model the genetic association on changes in body mass index across the life course and estimate the odds of type 2 diabetes per TCF7L2 risk allele. Results We observed both significant increases in type 2 diabetes prevalence at examination (independent of body mass index) and decreases in mean body mass index and waist circumference across genotypes at rs7903146. We observed a significant multivariable association between the additive number of type 2 diabetes-risk alleles and lower body mass index at examination. In our structured modeling, we observed non-significant inverse direct associations between rs7903146-T and body mass index at ages 21 and 45 years, and a significant positive association between rs7903146-T and type 2 diabetes onset in both middle and late adulthood. Conclusions Herein, we replicated the protective effect of rs7930146-T on body mass index at multiple time points in the life course, and observed that these effects were not explained by past type 2 diabetes status in our structured modeling. The robust replication of the negative effects of TCF7L2 on body mass index in multiple samples, including in our diverse Hispanic/Latino community-based sample, supports a growing body of literature on the complex biologic mechanism underlying the functional consequences of TCF7L2 on obesity and type 2 diabetes across the life course

    Reproductive aging-associated common genetic variants and the risk of breast cancer

    Get PDF
    Introduction: A younger age at menarche and an older age at menopause are well established risk factors for breast cancer. Recent genome-wide association studies have identified several novel genetic loci associated with these two traits. However, the association between these loci and breast cancer risk is unknown.Methods: In this study, we investigated 19 and 17 newly identified single nucleotide polymorphisms (SNPs) from the ReproGen Consortium that have been associated with age at menarche and age at natural menopause, respectively, and assessed their associations with breast cancer risk in 6 population-based studies among up to 3,683 breast cancer cases and 34,174 controls in white women of European ancestry. In addition, we used these SNPs to calculate genetic risk scores (GRSs) based on their associations with each trait.Results: After adjusting for age and potential population stratification, two age at menarche associated SNPs (rs1079866 and rs7821178) and one age at natural menopause associated SNP (rs2517388) were associated with breast cancer risk (p values, 0.003, 0.009 and 0.023, respectively). The odds ratios for breast cancer corresponding to per-risk-allele were 1.14 (95% CI, 1.05 to 1.24), 1.08 (95% CI, 1.02 to 1.15) and 1.10 (95% CI, 1.01 to 1.20), respectively, and were in the direction predicted by their associations with age at menarche or age at natural menopause. These associations did not appear to be attenuated by further controlling for self-reported age at menarche, age at natural menopause, or known breast cancer susceptibility loci. Although we did not observe a statistically significant association between any GRS for reproductive aging and breast cancer risk, the 4 th and 5 th highest quintiles of the younger age at menarche GRS had odds ratios of 1.14 (95% CI, 1.01 to 1.28) and 1.13 (95% CI, 1.00 to 1.27), respectively, compared to the lowest quintile.Conclusions: Our study suggests that three genetic variants, independent of their associations with age at menarche or age at natural menopause, were associated with breast cancer risk and may contribute modestly to breast cancer risk prediction; however, the combination of the 19 age at

    Genetic risk factors for BMI and obesity in an ethnically diverse population: Results from the population architecture using genomics and epidemiology (PAGE) study

    Get PDF
    Several genome-wide association studies (GWAS) have demonstrated that common genetic variants contribute to obesity. However, studies of this complex trait have focused on ancestrally European populations, despite the high prevalence of obesity in some minority groups. As part of the ‘Population Architecture using Genomics and Epidemiology (PAGE)’ Consortium, we investigated the association between thirteen GWAS-identified SNPs and BMI and obesity in 69,775 subjects, including 6,149 American Indians, 15,415 African-Americans, 2,438 East Asians, 7,346 Hispanics, 604 Pacific Islanders, and 37,823 European Americans. For the BMI-increasing allele of each SNP, we calculated beta coefficients using linear regression (for BMI) and risk estimates using logistic regression (for obesity defined as BMI ≥ 30) followed by fixed-effects meta-analysis to combine results across PAGE sites. Analyses stratified by racial/ethnic group assumed an additive genetic model and adjusted for age, sex, and current smoking. We defined “replicating SNPs” (in European Americans) and “generalizing SNPs” (in other racial/ethnic groups) as those associated with an allele frequency-specific increase in BMI. By this definition, we replicated 9/13 SNP associations (5 out of 8 loci) in European Americans. We also generalized 8/13 SNP associations (5/8 loci) in East Asians, 7/13 (5/8 loci) in African Americans, 6/13 (4/8 loci) in Hispanics, 5/8 in Pacific Islanders (5/8 loci), and 5/9 (4/8 loci) in American Indians. Linkage disequilibrium patterns suggest that tagSNPs selected for European Americans may not adequately tag causal variants in other ancestry groups. Accordingly, fine-mapping in large samples is needed to comprehensively explore these loci in diverse populations
    corecore