14 research outputs found

    Remote Programming of Multirobot Systems within the UPC-UJI Telelaboratories: System Architecture and Agent-Based Multirobot Control

    Get PDF
    One of the areas that needs further improvement within E-Learning environments via Internet (A big effort is required in this area if progress is to be made) is allowing students to access and practice real experiments in a real laboratory, instead of using simulations [1]. Real laboratories allow students to acquire methods, skills and experience related to real equipment, in a manner that is very close to the way they are being used in industry. The purpose of the project is the study, development and implementation of an E-Learning environment to allow undergraduate students to practice subjects related to Robotics and Artificial Intelligence. The system, which is now at a preliminary stage, will allow the remote experimentation with real robotic devices (i.e. robots, cameras, etc.). It will enable the student to learn in a collaborative manner (remote participation with other students) where it will be possible to combine the onsite activities (performed “in-situ” within the real lab during the normal practical sessions), with the “on-line” one (performed remotely from home via the Internet). Moreover, the remote experiments within the E-Laboratory to control the real robots can be performed by both, students and even scientist. This project is under development and it is carried out jointly by two Universities (UPC and UJI). In this article we present the system architecture and the way students and researchers have been able to perform a Remote Programming of Multirobot Systems via web

    Fitting primitive shapes in point clouds: a practical approach to improve autonomous underwater grasp specification of unknown objects

    Get PDF
    This article presents research on the subject of autonomous underwater robot manipulation. Ongoing research in underwater robotics intends to increase the autonomy of intervention operations that require physical interaction in order to achieve social benefits in fields such as archaeology or biology that cannot afford the expenses of costly underwater operations using remote operated vehicles. Autonomous grasping is still a very challenging skill, especially in underwater environments, with highly unstructured scenarios, limited availability of sensors and adverse conditions that affect the robot perception and control systems. To tackle these issues, we propose the use of vision and segmentation techniques that aim to improve the specification of grasping operations on underwater primitive shaped objects. Several sources of stereo information are used to gather 3D information in order to obtain a model of the object. Using a RANSAC segmentation algorithm, the model parameters are estimated and a set of feasible grasps are computed. This approach is validated in both simulated and real underwater scenarios.This research was partly supported by Spanish Ministry of Research and Innovation DPI2011-27977-C03 (TRITON Project), by Foundation Caixa CastellĂł Bancaixa PI-1B2011-17, by Universitat Jaume I PhD grants PREDOC/2012/47 and PREDOC/ 2013/46, and by Generalitat Valenciana PhD grant ACIF/2014/298

    Visually-Guided Manipulation Techniques for Robotic Autonomous Underwater Panel Interventions

    Get PDF
    The long term of this ongoing research has to do with increasing the autonomy levels for underwater intervention missions. Bearing in mind that the speci c mission to face has been the intervention on a panel, in this paper some results in di erent development stages are presented by using the real mechatronics and the panel mockup. Furthermore, some details are highlighted describing two methodologies implemented for the required visually-guided manipulation algorithms, and also a roadmap explaining the di erent testbeds used for experimental validation, in increasing complexity order, are presented. It is worth mentioning that the aforementioned results would be impossible without previous generated know-how for both, the complete developed mechatronics for the autonomous underwater vehicle for intervention, and the required 3D simulation tool. In summary, thanks to the implemented approach, the intervention system is able to control the way in which the gripper approximates and manipulates the two panel devices (i.e. a valve and a connector) in autonomous manner and, results in di erent scenarios demonstrate the reliability and feasibility of this autonomous intervention system in water tank and pool conditions.This work was partly supported by Spanish Ministry of Research and Innovation DPI2011-27977-C03 (TRITON Project) and DPI2014-57746-C3 (MERBOTS Project), by Foundation Caixa Castell o-Bancaixa and Universitat Jaume I grant PID2010-12, by Universitat Jaume I PhD grants PREDOC/2012/47 and PREDOC/2013/46, and by Generalitat Valenciana PhD grant ACIF/2014/298. We would like also to acknowledge the support of our partners inside the Spanish Coordinated Projects TRITON and MERBOTS: Universitat de les Illes Balears, UIB (subprojects VISUAL2 and SUPERION) and Universitat de Girona, UdG (subprojects COMAROB and ARCHROV)

    I-AUV Docking and Panel Intervention at Sea

    Get PDF
    The use of commercially available autonomous underwater vehicles (AUVs) has increased during the last fifteen years. While they are mainly used for routine survey missions, there is a set of applications that nowadays can be only addressed by manned submersibles or work-class remotely operated vehicles (ROVs) equipped with teleoperated arms: the intervention applications. To allow these heavy vehicles controlled by human operators to perform intervention tasks, underwater structures like observatory facilities, subsea panels or oil-well Christmas trees have been adapted, making them more robust and easier to operate. The TRITON Spanish founded project proposes the use of a light-weight intervention AUV (I-AUV) to carry out intervention applications simplifying the adaptation of these underwater structures and drastically reducing the operational cost. To prove this concept, the Girona 500 I-AUV is used to autonomously dock into an adapted subsea panel and once docked perform an intervention composed of turning a valve and plugging in/unplugging a connector. The techniques used for the autonomous docking and manipulation as well as the design of an adapted subsea panel with a funnel-based docking system are presented in this article together with the results achieved in a water tank and at sea.This work was supported by the Spanish project DPI2014-57746-C3 (MERBOTS Project) and by Generalitat Valenciana under Grant GVA-PROMETEO/2016/066. The University of Girona wants to thank the SARTI group for their collaboration with the TRITON project

    I-AUV Docking and Panel Intervention at Sea

    Get PDF
    The use of commercially available autonomous underwater vehicles (AUVs) has increased during the last fifteen years. While they are mainly used for routine survey missions, there is a set of applications that nowadays can be only addressed by manned submersibles or work-class remotely operated vehicles (ROVs) equipped with teleoperated arms: the intervention applications. To allow these heavy vehicles controlled by human operators to perform intervention tasks, underwater structures like observatory facilities, subsea panels or oil-well Christmas trees have been adapted, making them more robust and easier to operate. The TRITON Spanish founded project proposes the use of a light-weight intervention AUV (I-AUV) to carry out intervention applications simplifying the adaptation of these underwater structures and drastically reducing the operational cost. To prove this concept, the Girona 500 I-AUV is used to autonomously dock into an adapted subsea panel and once docked perform an intervention composed of turning a valve and plugging in/unplugging a connector. The techniques used for the autonomous docking and manipulation as well as the design of an adapted subsea panel with a funnel-based docking system are presented in this article together with the results achieved in a water tank and at sea.This work was supported by the Spanish project DPI2014-57746-C3 (MERBOTS Project) and by Generalitat Valenciana under Grant GVA-PROMETEO/2016/066. The University of Girona wants to thank the SARTI group for their collaboration with the TRITON project

    Reconfigurable AUV for Intervention Missions: A Case Study on Underwater Object Recovery

    Get PDF
    Starting in January 2009, the RAUVI (Reconfigurable Autonomous Underwater Vehicle for Intervention Missions) project is a 3-year coordinated research action funded by the Spanish Ministry of Research and Innovation. In this paper, the state of progress after 2 years of continuous research is reported. As a first experimental validation of the complete system, a search and recovery problem is addressed, consisting of finding and recovering a flight data recorder placed at an unknown position at the bottom of a water tank. An overview of the techniques used to successfully solve the problem in an autonomous way is provided. The obtained results are very promising and are the first step toward the final test in shallow water at the end of 2011

    Autonomous underwater grasping using multi-view laser reconstruction

    No full text
    ComunicaciĂł presentada a Oceans 2017 Conference, Aberdeen, 19-22 June 2017Autonomous manipulation in underwater scenarios is a highly complex task which is still poorly studied, but with a growing interest in the last years. Two of the main phases of this problem are the detection and characterization of the object which is going to be manipulated, and the planning of this manipulation. This paper presents, on the one hand, the results of a multi-view laser reconstruction approach used in a real system. This approach consists in attaching a laser emitter and a camera in the forearm of a robotic arm. Then, moving the arm, the scene is scanned and reconstructed. This configuration allows the user to reconstruct autonomously a scene from different points of view and with a high precision. On the other hand, a grasp planning algorithm has been described. This method makes possible to autonomously detect the object of interest from a scene with multiple objects, and to choose which is the best arm configuration in order to manipulate it

    Increasing autonomy within underwater intervention scenarios: The user interface approach

    No full text
    The present work represents working progress for designing a Graphical User Interface (GUI) within an ongoing research project named RAUVI (e.g. Reconfigurable AUV for Intervention Missions). This GUI should help the user to identify the target using images compiled by the I-AUV through a previous survey stage. After that, the user is able to specify the most suitable intervention task selected among a set of predefined ones. Thus, a very intuitive and user-friendly interface has been designed, enabling a non qualified user to succeed in the specification of an intervention mission. Furthermore, some implementation details and their performance about different facilities integrated within this GUI to assist the user in the required specification of underwater intervention missions will be addressed.This research was partly supported by the European Commission’s Seventh Framework Programme FP7/2007- 2013 under grant agreement 248497(TRIDENT Project), by Ministerio de Ciencia e Innovación (DPI2008-06548-C03-01), and by Fundació Caixa Castelló-Bancaixa (P1-1B2009-50)

    Grasping for the Seabed: Developing a New Underwater Robot Arm for Shallow-Water Intervention

    Get PDF
    A new underwater robot arm was developed through intensive cooperation between different academic institutions and an industrial company. The manipulator, which was initially designed to be teleoperated, was adapted for our autonomy needs. Its dimensions and weight were reduced, and its kinematic model was developed so that autonomous control can be performed with it. We compare several commercially available underwater manipulators and describe the development of the new one, from its initial configuration to its mechanical adaptation, modeling, control, and final assembly on an autonomous underwater vehicle (AUV). The feasibility and reliability of this arm is demonstrated in water tank conditions, where various innovative autonomous object-recovery operations are successfully performed, both in stand-alone operation and integrated in an AUV prototype
    corecore