15 research outputs found

    RICORS2040 : The need for collaborative research in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true

    Finding genetically-supported drug targets for Parkinson’s disease using Mendelian randomization of the druggable genome

    Get PDF
    Parkinson’s disease is a neurodegenerative movement disorder that currently has no disease-modifying treatment, partly owing to inefficiencies in drug target identification and validation. We use Mendelian randomization to investigate over 3,000 genes that encode druggable proteins and predict their efficacy as drug targets for Parkinson’s disease. We use expression and protein quantitative trait loci to mimic exposure to medications, and we examine the causal effect on Parkinson’s disease risk (in two large cohorts), age at onset and progression. We propose 23 drug-targeting mechanisms for Parkinson’s disease, including four possible drug repurposing opportunities and two drugs which may increase Parkinson’s disease risk. Of these, we put forward six drug targets with the strongest Mendelian randomization evidence. There is remarkably little overlap between our drug targets to reduce Parkinson’s disease risk versus progression, suggesting different molecular mechanisms. Drugs with genetic support are considerably more likely to succeed in clinical trials, and we provide compelling genetic evidence and an analysis pipeline to prioritise Parkinson’s disease drug development

    Comprehensive analysis and insights gained from long-term experience of the Spanish DILI Registry

    Get PDF
    Altres ajuts: Fondo Europeo de Desarrollo Regional (FEDER); Agencia Española del Medicamento; Consejería de Salud de Andalucía.Background & Aims: Prospective drug-induced liver injury (DILI) registries are important sources of information on idiosyncratic DILI. We aimed to present a comprehensive analysis of 843 patients with DILI enrolled into the Spanish DILI Registry over a 20-year time period. Methods: Cases were identified, diagnosed and followed prospectively. Clinical features, drug information and outcome data were collected. Results: A total of 843 patients, with a mean age of 54 years (48% females), were enrolled up to 2018. Hepatocellular injury was associated with younger age (adjusted odds ratio [aOR] per year 0.983; 95% CI 0.974-0.991) and lower platelet count (aOR per unit 0.996; 95% CI 0.994-0.998). Anti-infectives were the most common causative drug class (40%). Liver-related mortality was more frequent in patients with hepatocellular damage aged ≥65 years (p = 0.0083) and in patients with underlying liver disease (p = 0.0221). Independent predictors of liver-related death/transplantation included nR-based hepatocellular injury, female sex, higher onset aspartate aminotransferase (AST) and bilirubin values. nR-based hepatocellular injury was not associated with 6-month overall mortality, for which comorbidity burden played a more important role. The prognostic capacity of Hy's law varied between causative agents. Empirical therapy (corticosteroids, ursodeoxycholic acid and MARS) was prescribed to 20% of patients. Drug-induced autoimmune hepatitis patients (26 cases) were mainly females (62%) with hepatocellular damage (92%), who more frequently received immunosuppressive therapy (58%). Conclusions: AST elevation at onset is a strong predictor of poor outcome and should be routinely assessed in DILI evaluation. Mortality is higher in older patients with hepatocellular damage and patients with underlying hepatic conditions. The Spanish DILI Registry is a valuable tool in the identification of causative drugs, clinical signatures and prognostic risk factors in DILI and can aid physicians in DILI characterisation and management. Lay summary: Clinical information on drug-induced liver injury (DILI) collected from enrolled patients in the Spanish DILI Registry can guide physicians in the decision-making process. We have found that older patients with hepatocellular type liver injury and patients with additional liver conditions are at a higher risk of mortality. The type of liver injury, patient sex and analytical values of aspartate aminotransferase and total bilirubin can also help predict clinical outcomes

    Human-lineage-specific genomic elements are associated with neurodegenerative disease and APOE transcript usage

    Get PDF
    Altres ajuts: Leonard Wolfson Foundation; United Kingdom Medical Research Council (MRC, MR/N008324/1); DRI Limited; UK Medical Research Council; Alzheimer's Society and Alzheimer's Research UK; Medical Research Council (MR/N026004/1); Wellcome Trust (202903/Z/16/Z); Dolby Family Fund; National Institute for Health Research; University College London; Fundación Séneca, Agencia de Ciencia y Tecnología de la Región de Murcia (00007/COVI/20).Knowledge of genomic features specific to the human lineage may provide insights into brain-related diseases. We leverage high-depth whole genome sequencing data to generate a combined annotation identifying regions simultaneously depleted for genetic variation (constrained regions) and poorly conserved across primates. We propose that these constrained, non-conserved regions (CNCRs) have been subject to human-specific purifying selection and are enriched for brain-specific elements. We find that CNCRs are depleted from protein-coding genes but enriched within lncRNAs. We demonstrate that per-SNP heritability of a range of brain-relevant phenotypes are enriched within CNCRs. We find that genes implicated in neurological diseases have high CNCR density, including APOE, highlighting an unannotated intron-3 retention event. Using human brain RNA-sequencing data, we show the intron-3-retaining transcript to be more abundant in Alzheimer's disease with more severe tau and amyloid pathological burden. Thus, we demonstrate potential association of human-lineage-specific sequences in brain development and neurological disease

    Moving beyond neurons : the role of cell type-specific gene regulation in Parkinson's disease heritability

    No full text
    Parkinson's disease (PD), with its characteristic loss of nigrostriatal dopaminergic neurons and deposition of α-synuclein in neurons, is often considered a neuronal disorder. However, in recent years substantial evidence has emerged to implicate glial cell types, such as astrocytes and microglia. In this study, we used stratified LD score regression and expression-weighted cell-type enrichment together with several brain-related and cell-type-specific genomic annotations to connect human genomic PD findings to specific brain cell types. We found that PD heritability attributable to common variation does not enrich in global and regional brain annotations or brain-related cell-type-specific annotations. Likewise, we found no enrichment of PD susceptibility genes in brain-related cell types. In contrast, we demonstrated a significant enrichment of PD heritability in a curated lysosomal gene set highly expressed in astrocytic, microglial, and oligodendrocyte subtypes, and in LoF-intolerant genes, which were found highly expressed in almost all tested cellular subtypes. Our results suggest that PD risk loci do not lie in specific cell types or individual brain regions, but rather in global cellular processes detectable across several cell types

    Measurement of the tt¯ charge asymmetry in events with highly Lorentz-boosted top quarks in pp collisions at s=13 TeV

    No full text
    The measurement of the charge asymmetry in top quark pair events with highly Lorentz-boosted top quarks decaying to a single lepton and jets is presented. The analysis is performed using proton-proton collisions at s=13TeV with the CMS detector at the LHC and corresponding to an integrated luminosity of 138 fb−1. The selection is optimized for top quarks produced with large Lorentz boosts, resulting in nonisolated leptons and overlapping jets. The top quark charge asymmetry is measured for events with a tt¯ invariant mass larger than 750 GeV and corrected for detector and acceptance effects using a binned maximum likelihood fit. The measured top quark charge asymmetry of (0.42−0.69+0.64)% is in good agreement with the standard model prediction at next-to-next-to-leading order in quantum chromodynamic perturbation theory with next-to-leading-order electroweak corrections. The result is also presented for two invariant mass ranges, 750–900 and >900GeV

    Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state in proton-proton collisions at s=13TeV

    Get PDF
    A search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state is presented. The analysis is based on proton-proton collision data recorded by the CMS detector in 2016–2018 at a centre-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 138fb−1. The search is sensitive to resonances with masses between 1.3 and 6TeV, decaying to bosons that are highly Lorentz-boosted such that each of the bosons forms a single large-radius jet. Machine learning techniques are employed to identify such jets. No significant excess over the estimated standard model background is observed. A maximum local significance of 3.6 standard deviations, corresponding to a global significance of 2.3 standard deviations, is observed at masses of 2.1 and 2.9 TeV. In a heavy vector triplet model, spin-1 Z′ and W′ resonances with masses below 4.8TeV are excluded at the 95% confidence level (CL). These limits are the most stringent to date. In a bulk graviton model, spin-2 gravitons and spin-0 radions with masses below 1.4 and 2.7TeV, respectively, are excluded at 95% CL. Production of heavy resonances through vector boson fusion is constrained with upper cross section limits at 95% CL as low as 0.1fb

    Search for new Higgs bosons via same-sign top quark pair production in association with a jet in proton-proton collisions at s=13TeV

    Get PDF
    A search is presented for new Higgs bosons in proton-proton (pp) collision events in which a same-sign top quark pair is produced in association with a jet, via the pp→tH/A→ttc‾ and pp→tH/A→ttu‾ processes. Here, H and A represent the extra scalar and pseudoscalar boson, respectively, of the second Higgs doublet in the generalized two-Higgs-doublet model (g2HDM). The search is based on pp collision data collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 138fb−1. Final states with a same-sign lepton pair in association with jets and missing transverse momentum are considered. New Higgs bosons in the 200–1000 GeV mass range and new Yukawa couplings between 0.1 and 1.0 are targeted in the search, for scenarios in which either H or A appear alone, or in which they coexist and interfere. No significant excess above the standard model prediction is observed. Exclusion limits are derived in the context of the g2HDM

    Study of azimuthal anisotropy of ϒ(1S) mesons in pPb collisions at sNN = 8.16 TeV

    No full text
    The azimuthal anisotropy of Image 1 mesons in high-multiplicity proton-lead collisions is studied using data collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 8.16TeV. The Image 1 mesons are reconstructed using their dimuon decay channel. The anisotropy is characterized by the second Fourier harmonic coefficients, found using a two-particle correlation technique, in which the Image 1 mesons are correlated with charged hadrons. A large pseudorapidity gap is used to suppress short-range correlations. Nonflow contamination from the dijet background is removed using a low-multiplicity subtraction method, and the results are presented as a function of Image 1 transverse momentum. The azimuthal anisotropies are smaller than those found for charmonia in proton-lead collisions at the same collision energy, but are consistent with values found for Image 1 mesons in lead-lead interactions at a nucleon-nucleon center-of-mass energy of 5.02 TeV

    Measurements of azimuthal anisotropy of nonprompt D0 mesons in PbPb collisions at sNN=5.02TeV

    Get PDF
    Measurements of the elliptic (v2) and triangular (v3) azimuthal anisotropy coefficients are presented for Image 1 mesons produced in Image 2 hadron decays (nonprompt Image 1 mesons) in lead-lead collisions at sNN=5.02TeV. The results are compared with previously published charm meson anisotropies measured using prompt Image 1 mesons. The data were collected with the CMS detector in 2018 with an integrated luminosity of 0.58nb−1. Azimuthal anisotropy is sensitive to the interactions of quarks with the hot and dense medium created in heavy ion collisions. Comparing results for prompt and nonprompt Image 1 mesons can assist in understanding the mass dependence of these interactions. The nonprompt results show lower magnitudes of v2 and v3 and weaker dependences on the meson transverse momentum and collision centrality than those found for prompt Image 1 mesons. The results are in agreement with theoretical predictions that include a mass dependence in the interactions of quarks with the medium
    corecore