22,078 research outputs found

    Phase diagram of a polydisperse soft-spheres model for liquids and colloids

    Get PDF
    The phase diagram of soft spheres with size dispersion has been studied by means of an optimized Monte Carlo algorithm which allows to equilibrate below the kinetic glass transition for all sizes distribution. The system ubiquitously undergoes a first order freezing transition. While for small size dispersion the frozen phase has a crystalline structure, large density inhomogeneities appear in the highly disperse systems. Studying the interplay between the equilibrium phase diagram and the kinetic glass transition, we argue that the experimentally found terminal polydispersity of colloids is a purely kinetic phenomenon.Comment: Version to be published in Physical Review Letter

    Separation and fractionation of order and disorder in highly polydisperse systems

    Get PDF
    Microcanonical Monte Carlo simulations of a polydisperse soft-spheres model for liquids and colloids have been performed for very large polydispersity, in the region where a phase-separation is known to occur when the system (or part of it) solidifies. By studying samples of different sizes, from N=256 to N=864, we focus on the nature of the two distinct coexisting phases. Measurements of crystalline order in particles of different size reveal that the solid phase segregates between a crystalline solid with cubic symmetry and a disordered phase. This phenomenon is termed fractionation.Comment: 8 pages, 5 figure

    The confined hydrogen atom with a moving nucleus

    Full text link
    We study the hydrogen atom confined to a spherical box with impenetrable walls but, unlike earlier pedagogical articles on the subject, we assume that the nucleus also moves. We obtain the ground-state energy approximately by means of first--order perturbation theory and by a more accurate variational approach. We show that it is greater than the one for the case in which the nucleus is clamped at the center of the box. Present approach resembles the well-known treatment of the helium atom with clamped nucleus

    Further analysis of the connected moments expansion

    Full text link
    We apply the connected moments expansion to simple quantum--mechanical examples and show that under some conditions the main equations of the approach are no longer valid. In particular we consider two--level systems, the harmonic oscillator and the pure quartic oscillator.Comment: 19 pages; 2 tables; 4 figure

    Accuracy of MUAC in the detection of severe wasting with the new WHO growth standards.

    Get PDF
    OBJECTIVES: The objectives of this study were to estimate the accuracy of using mid-upper-arm circumference (MUAC) measurements to diagnose severe wasting by comparing the new standards from the World Health Organization (WHO) with those from the US National Center for Health Statistics (NCHS) and to analyze the age independence of the MUAC cutoff values for both curves. METHODS: We used cross-sectional anthropometric data for 34,937 children between the ages of 6 and 59 months, from 39 nutritional surveys conducted by Doctors Without Borders. Receiver operating characteristic curves were used to examine the accuracy of MUAC diagnoses. MUAC age independence was analyzed with logistic regression models. RESULTS: With the new WHO curve, the performance of MUAC measurements, in terms of sensitivity and specificity, deteriorated. With different cutoff values, however, the WHO standards significantly improved the predictive value of MUAC measurements over the NCHS standards. The sensitivity and specificity of MUAC measurements were the most age independent when the WHO curve, rather than the NCHS curve, was used. CONCLUSIONS: This study confirms the need to change the MUAC cutoff value from <110 mm to <115 mm. This increase of 5 mm produces a large change in sensitivity (from 16% to 25%) with little loss in specificity, improves the probability of diagnosing severe wasting, and reduces false-negative results by 12%. This change is needed to maintain the same diagnostic accuracy as the old curve and to identify the children at greatest risk of death resulting from severe wasting

    Ricci flow, quantum mechanics and gravity

    Full text link
    It has been argued that, underlying any given quantum-mechanical model, there exists at least one deterministic system that reproduces, after prequantisation, the given quantum dynamics. For a quantum mechanics with a complex d-dimensional Hilbert space, the Lie group SU(d) represents classical canonical transformations on the projective space CP^{d-1} of quantum states. Let R stand for the Ricci flow of the manifold SU(d-1) down to one point, and let P denote the projection from the Hopf bundle onto its base CP^{d-1}. Then the underlying deterministic model we propose here is the Lie group SU(d), acted on by the operation PR. Finally we comment on some possible consequences that our model may have on a quantum theory of gravity.Comment: 8 page

    Roper Excitation in Alpha-Proton Scattering

    Get PDF
    We study the Roper excitation in the (α,α)(\alpha,\alpha') reaction. We consider all processes which may be relevant in the Roper excitation region, namely, Roper excitation in the target, Roper excitation in the projectile, and double Δ\Delta excitation processes. The theoretical investigation shows that the Roper excitation in the proton target mediated by an isoscalar exchange is the dominant mechanism in the process. We determine an effective isoscalar interaction by means of which the experimental cross section is well reproduced. This should be useful to make predictions in related reactions and is a first step to construct eventually a microscopic NNNNNN \rightarrow NN^* transition potential, for which the present reaction does not offer enough information.Comment: Latex 17 pages; figures available by request; Phys. Rev. C in prin

    Inversion of perturbation series

    Full text link
    We investigate the inversion of perturbation series and its resummation, and prove that it is related to a recently developed parametric perturbation theory. Results for some illustrative examples show that in some cases series reversion may improve the accuracy of the results

    Majorana Zero Modes in Graphene

    Get PDF
    A clear demonstration of topological superconductivity (TS) and Majorana zero modes remains one of the major pending goal in the field of topological materials. One common strategy to generate TS is through the coupling of an s-wave superconductor to a helical half-metallic system. Numerous proposals for the latter have been put forward in the literature, most of them based on semiconductors or topological insulators with strong spin-orbit coupling. Here we demonstrate an alternative approach for the creation of TS in graphene/superconductor junctions without the need of spin-orbit coupling. Our prediction stems from the helicity of graphene's zero Landau level edge states in the presence of interactions, and on the possibility, experimentally demonstrated, to tune their magnetic properties with in-plane magnetic fields. We show how canted antiferromagnetic ordering in the graphene bulk close to neutrality induces TS along the junction, and gives rise to isolated, topologically protected Majorana bound states at either end. We also discuss possible strategies to detect their presence in graphene Josephson junctions through Fraunhofer pattern anomalies and Andreev spectroscopy. The latter in particular exhibits strong unambiguous signatures of the presence of the Majorana states in the form of universal zero bias anomalies. Remarkable progress has recently been reported in the fabrication of the proposed type of junctions, which offers a promising outlook for Majorana physics in graphene systems.Comment: 14 pages, 8 figures. Included simulations of Andreev spectroscopy and mor

    Large rescaling of the Higgs condensate: theoretical motivations and lattice results

    Get PDF
    In the Standard Model the Fermi constant is associated with the vacuum expectation value of the Higgs field, `the condensate', usually believed to be a cutoff-independent quantity. General arguments related to the `triviality' of Φ4\Phi^4 theory in 4 space-time dimensions suggest, however, a dramatic renormalization effect in the continuum limit that is clearly visible on the relatively large lattices available today. The result can be crucial for the Higgs phenomenology and in any context where spontaneous symmetry breaking is induced through scalar fields.Comment: LATTICE99(Higgs) 3 pages, 3 figure
    corecore