8 research outputs found

    Attitude determination and calibration using a recursive maximum likelihood-based adaptive Kalman filter

    Get PDF
    An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter

    Development of Helicopter Flight Path Models

    Get PDF
    The objective of this paper is to present general techniques for simulating helicopter flight trajectory response. During flight the pilot manipulates the controls either to trim the helicopter for steady flight by balancing the external forces and moments or to produce a desired maneuver by controlling the unbalance of these forces and moments. Discussions of the physical phenomena involved with the aerodynamics of the rotors and fuselage are given in [1] through [3]. The simulated control function will be composed forward-aft cyclic, lateral cyclic, pedal, and collective. This control will be represented by the vecto

    Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation. Volume 2, Part 2: Appendixes B, C, D and E

    Get PDF
    The derivation of the equations is presented, the rate control algorithm described, and simulation methodologies summarized. A set of dynamics equations that can be used recursively to calculate forces and torques acting at the joints of an n link manipulator given the manipulator joint rates are derived. The equations are valid for any n link manipulator system with any kind of joints connected in any sequence. The equations of motion for the class of manipulators consisting of n rigid links interconnected by rotary joints are derived. A technique is outlined for reducing the system of equations to eliminate contraint torques. The linearized dynamics equations for an n link manipulator system are derived. The general n link linearized equations are then applied to a two link configuration. The coordinated rate control algorithm used to compute individual joint rates when given end effector rates is described. A short discussion of simulation methodologies is presented

    Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation, volume 2, part 1. Appendix A: Software documentation

    Get PDF
    Documentation of the preliminary software developed as a framework for a generalized integrated robotic system simulation is presented. The program structure is composed of three major functions controlled by a program executive. The three major functions are: system definition, analysis tools, and post processing. The system definition function handles user input of system parameters and definition of the manipulator configuration. The analysis tools function handles the computational requirements of the program. The post processing function allows for more detailed study of the results of analysis tool function executions. Also documented is the manipulator joint model software to be used as the basis of the manipulator simulation which will be part of the analysis tools capability

    Development of Helicopter Flight Path Models

    No full text

    Helicopter Motion: Equation Linearization

    No full text
    The nonlinear set of equations which represent helicopter motion is linearized about a prescribed nominal state. Once the linearized system is obtained it is validated by comparing the output of the nonlinear system to that of its linearized counterpart. Having obtained a linear model, linear system theory may then be applied in order to investigate the stability and control characteristics of the aircraft
    corecore