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The objective of this paper is to present general techniques
for simulating helicopter flight trajectory response. During
flight the pilot manipulates the controls either to trim the
helicopter for steady flight by balancing the external forces
and moments or to produce a desired maneuver by control-
ling the unbalance of these forces and moments. Discussions
of the physical phenomena involved with the aerodynamics
of the rotors and fuselage are given in [11 through [3].

The simulated control function will be composed
forward-aft cyclic, lateral cyclic, pedal, and collective.
This control will be represented by the vector

(u = collective
U2 A lateral cyclic

u =g
| U3 4 longitudinal cyclic
tu4 A pedal

(1)

The purpose of the pilot control input is to create neces-
sary aerodynamic forces and moments to control helicopter
motion and attitude which is measured by the center of
gravity velocity and the angular orientation (yaw, pitch,
and roll) and velocity of the fuselage. This output state
will be denoted by the vector

r
I

v } velocity of the center of gravity
w I

q angular velocity of the fuselage
rJ

(2)

0 1 angular orientation of the fuselage

Q2 } rotor speed

To provide closed-loop action for the simulation, the
control model must interpret the necessary control u as a
result of any deviation in x from the desired state. Fig. 1
illustrates the overall concept of the flight path simulation in
block diagram form.

The blocks numbered 1 through 5 are associated with
the helicopter dynamics model. Discussion of the model
applied to this study is given in [4], [11], and [13]. The
linearized version of the dynamics model [13] provides the
basic representation of the helicopter response for the
solution of the control problem. In the present study only
block 8 will be considered. Hence the pilot control action,
block 9 of Fig. 1, has been assumed to be a unit gain which
implies that the control goal is instantaneously predicted.
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Fig. 1. Helicopter flight path model.

Nomenclature

E 4 Error function.
JJ 4 Objective function.
u 4 Nominal control vector.

ug _ Control goal.
ubu 4 Perturbed control.

WE Symmetric positive definite state weighting function.
Wu Symmetric positive definite control weighting func-

tion.
Xd 4 Desired state vector.
xl 4 Linearized state vector.
4x Perturbed state vector.
¢ 4 Stability matrix.
0 4 Control matrix.

Deterministic Control Model

Two basic approaches to developing a mathematical
representation of the human operator's data sampling, error
quantization, and control goal decision roles can be defined.
These two approaches are significantly different in their
characterization of the operator. One method involves the
qualitative and psychological aspects of the pilot. Func-
tions such as sensing of the aircraft state and various instru-
ments, the categorizing of these measurements as accept-
able or nonacceptable, the human prediction and memory
capability, and the human ability to adapt his response to
the given situation would be included in this type of
model. Probably one of the better illustrations of this ap-
proach is given by Benjamin [6]. His study involved the
relatively less complicated case of single input-output
tracking, whereas the helicopter pilot has four control
inputs at his disposal with the desirability of controlling
at least 10 output variables. Adding this dynamic model
complexity to an operator model such as Benjamin's which
is elaborate from the standpoint of the logic structure was
not feasible due to computer limitations.

The second approach can be entitled a quasi-pilot en-

gineering model which describes the overall performance

FLIGHT PATH

EVALUATE _ DECIDE ACTION

NOMINAL PAT CONTAROL

Fig. 2. Pilot model function.

Fig. 3. Control problem.

of the pilot without close regard to psychological function
of the human operator. Some authors [7] have referred
in general to these two approaches in a descriptive way as
microscopic and macroscopic modeling of the pilot, re-
spectively. From the results of the many previous investi-
gations concerned with the modeling of a human operator
in various tasks, it became apparent that the engineering
model approach was the most feasible based on the current
simulation state of the art.

The essential functions of a pilot model are to evaluate
the system error, predict the necessary control input goal,
and perform the control input manipulation, as illustrated
in Fig. 2. Thus in Fig. 1 the pilot control model provides
the feedback required for the closed-loop simulation of
the helicopter flight path in conjunction with the helicopter
dynamics model. Since the development of the pilot logic
for a general maneuver was impractical, the desired or
nominal trajectory for the helicopter state is prescribed
[5]. Comparison of this nominal with the actual state
produces the error from which the control goal can be
resolved.

From the desired trajectory, the state Xd (t) is known at
discrete time intervals 0, T, - - -, kT, ---, etc., as depicted
in Fig. 3. In addition, from the trimmed flight conditions,
the initial state x(0) and the control vector u(0) are known.
It is presumed that the starting point of the trajectory will
be a steady or trimmed flight condition. With these quanti-
ties given as initial data the helicopter dynamics portion
of the simulation will yield the new state at t = T, i.e.,
x(8). At the time T a new selection of control is necessary
for the next interval T to 2T. The control vector is con-

stant for the length of the discrete sampling time and is
only changed by some amount bu(k) at the next sampling
instant. With the new control the dynamics model again
yields the subsequent state of the helicopter. This re-
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spective process continues for the desired time of the pre-
scribed nominal path. The question to be answered is, what
control goal or change of control is required at each of the
sampling times?

For small perturbations the nonlinear helicopter dynam-
ics can be approximated by the linear state equation (13)

bi(t) = A6x(t) + B Su(t) (3)

where the system and control time-invariant matrices A
and B are evaluated at the particular state from which the
control change is to be calculated. The solution of (3) for
the time interval kT to (k + I)Tis known to be [8] -[10]

bx.{(k + I)T} = 0(') 6x(k7) + 0(T) 6u(kT) (4)

where 0 is a (10 X 10) stability matrix and 0 is a (10 X 4)
control matrix.

Since the desired state vector is given at the discrete
time increments xd (k), it is proposed that the necessary
control goal ug(kT) follow the desired path be calculated
with the simplified linear model. The selected goal should
minimize the deviation between the nominal and linear
helicopter states. Hence a cost function J which provides
the basis for selecting the best control vector should in-
clude both of these considerations. For convenience, a
quadratic form is defined

J = ET{(k + I)T} WE {(k + )T}E{(k + I)T}.

SuT {(k - l)T} = {xdT {(k + 1)T} - (x(kT)

+ q(T) 6X{(k -_ )T})T}

* WE{(k + 1)T} 0(7){0T(t)

* WE{(k + 1)T} 0(r)}-1. (9)

Application of the control law given by (8) and (9) to
certain desired flight paths results in a maximum/minimum
control. Therefore in order to avoid this condition alter-
nate cost functions can be considered.

If the computed control is not feasible,' then an obvious
solution is to minimize an objective function which weighs
the control, i.e., consider

J=ET{(k+ 1)T} WE{(k+ l)T}E{(k+ 1)T}

+6UT{(k-11)} W {(k- I)T} 6u{(k- I)T}. (10)

The control that minimizes (10) is given by

SuT {(k - I)T} = {jT {(k + I)T} - (XT(kT)
+ 6xT {(k _ 1)T} XT(nr)}

- WE{(k + I)T} 0(T){OT(T)

* WE {(k + I)T} 0(T)
(5)

The function J is to be minimized by the proper selection
of u(kT) where We is a time-varying matrix for the pre-
dicted state error at time (k + 1)T. Note that the predicted
error at the time (k + I)Tis

E{(k + l)T} =xd{(k + I)T}-xl{(k +1)T} (6)

but from (4) with x1(kT) set equal to the actual state
x(kT), the cost functional is

J=XT{(k + I)T} WE{(k + )T}xd{(k +1)T}

-2xT {(k + 1)T} WE {(k + )T}xd{(k + I)T}

-2xT{(k+ 1)T} WE {(k+ l)T}{!(7)6x{(k- I)T}

+ 0(T)u{(k - 1)T} + {(T)6x{(k- I)T}
C.

+ 0(T) u{(k- )T}}T WE{(k + I)T}

* {0(T)x{(k- 1)T} + 0()6u{(k- )T}. (7)

Therefore in order to minimize the cost functional the
control ug(kT) is given by

u (kT)=u{(k- )T}+bu{(k- 1)T} (8)

where

+Wu {(k - l)T}-I (11)

Generation of this control for certain desired flight paths
resulted in a control vector u which was not feasible.
Clearly this control could satisfy the control constraints
provided the time-varying weighting matrix W,, is chosen
correctly. Therein lies the problem, i.e., how does one
choose the weighting matrix We as a function of time?
Attempts were made to select Wu to limit excursion of
control to no avail.

In order to motivate the algorithm which does produce
a control that satisfies all control limit constraints, consider
(1 1). Note the effect of the control weighting function is
to add to the penalty associated with the state error, i.e.,
the last term in brackets of (1 1). Therefore with the con-
trol given by (9), this equation can be written as

UT {(k- )T}= i{(k + I)T}{OT(T) WE {(k+ I)T}0(T)y1
(12)

where

{x{(k + I)T}4A {xd {(k + 1)T} -(x(kT)

+ 0/$) 6xx{(k - 1)T})T}

0 WE{(k + 1)T} 0(T).
'Control constraints are given in Table Is
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TABLE I

Control Constraints

UPPER LIMIT LOWlER LIMIT
CON'.v.ituL (RADIANS) (RADIANS)

LATERIA CYC ICI 0.122 -0.189

LONGIIUDINAL 0.230 0.230
CYCLIC

COLLECTIVE PITChl 0.353 0.140

TAIL ROTOR PITCH 0 401 -0.122

weighting matrix for state and one for the control no longer
exists.

In order to demonstrate the feasibility of the control con-
sider

8u1T(kT) 6u.(kT) = x T {(k + 2)T}[{OT(T)

* WE {(k + 2)T} 0(T}-

{SOT(T) WE {(k + 1)T} 0(T)}J-1

* x{(k+2)T} (18)

Substituting (17) into (18) yields

6uT(k7) 6ud(kT U=1u(kT) {OT(T) WEUG(T)}

_ {0T(T) WE{(k + 2)T} 0(T)}1

Comparing (11) and (12) indicates that if

{6T(71 WE {(k + 1)T} 0(T) + WU {(k-)T>'

= {OT(T) WE {(k + 1)T} 0(T)} - 1

the two equations are identical and for simplicity

{OT(T) WEU {(k + 1)T} 0(T)}'

= {GT(T) WE{(k + I)T} 0(T)>'. (13)

Now assume that the control law generated using (9) is
not feasible. The solution for the kT time is given by

6UT(kT) = XT {(k + 2)T}{T(T) WE {(k + 2)T} 0(T)}>.
(14)

Solving for x {(k + 2)T} yields

X T{(k + 2)T} - 6uT(kT){IT(T) WE {(k + 2)T} 0(7)}
(15)

Since the control is not acceptable, i.e., it is too large or

too small, an iteration that will guarantee feasibility can be
defined. The first jth iteration is given by (14), the (1 + I)th
iteration yields the control

BUT ,(kT)- T {(k + 2)T}{dT() WEU(T)} (16)

Therefore it follows that

X T{(k+ 2)T}=6uT+(kTh{6T(T WEUO(T)}. (17)

In essence the objective function in the jth iteration is (5),
whereas the (I + l)th iteration utilizes the cost function
given in (10). However the necessity to select both a

* {OT(T) WE {(k + 2)T} 6(T)}-'
* { T(0 WEUO(T)}T &u,+.(kT). (19)
Tbu.from uj+1 ieldThen subtracting 6u)T 6 from 6u+1 yields

u+, u1 ubuj I
u/+, {I-0 WEUO {(OTWE)YI

(OTWEO) }OTWEU0}I bU+1

(20)

where the time parameters have been omitted. Now in order
that the ( + 1)th iteration be less than the jth iteration, the
term in brackets must be less than a preselected negative
definite matrixP, i.e., where

I - RMR <P (21)

withR _ T WEUO andM _ (6TWE6)y1 (OTWEO)T.
Note the matrixM is a known constant; hence solving (21)
for R will insure a feasible control.

Results and Conclusions

In order to demonstrate the application of the described
techniques to helicopter motion, four flight paths were

considered. These consisted of level flight, climb, dive, and
a turn/climb. In order to compare nonlinear versus linear
models, inertial position and angular velocities of the
helicopter were plotted as a function of time (Figs. 4
through 33).

Very little distinction could be made between the non-

linear and linear directional motion for the level, climb,
and dive configuration; i.e., north-south, east-west type
motion of predicted corresponds with the nominal-see [ 1].

Comparison of Figs. 5, 12, 19, and 27 indicates that the
predicted roll matches the desired state within ±0.4 rad.
Although roll was not matched as well in the climb orien-
tation, it nevertheless matches the shape of the desired
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Fig. 4. Inertial position for level flight.

Fig. 5. Level flight roll versus time.
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Fig. 6. Level flight pitch versus time.
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NOMINAL
Y) 0.0
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Fig. 8. Level flight lateral cyclic.

Fig. 9. Level flight longitudinal cyclic.
.3

c.1 CONTROL GENERATED

z

0 .2

-.3

I I i I 1- I -L
.25 .50 .75 1.0 125 1.50 1.75 2.0

TIME SEC

.4

.3

.2 CONTROL GENERATED

.1 / NOMINAL

0.0 L
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Fig. 10. Level flight tail rotor pitch.
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Fig. 7. Level flight collective pitch. Fig. 11. Inertial position for climb configuration.
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Fig. 12. Climb configuration roll versus time.

Fig. 13. Climb configuration pitch versus time.
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Fig. 16. Climb configuration longitudinal cyclic.

Fig. 17. Climb configuration tail rotor pitch.
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Fig. 14. Climb configuration collective pitch.
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Fig. 18. Inertial position for dive configuration.

50

40

z 30
4

< 20

o 10

0.0

10

20

.25 .50 i/5 1.0 12!

Fig. 15. Climb configuration lateral cycl ic

788

I | 0-2 0.4 0.6 08 1.0 1.2 14 1.6 1.8 2.0
5 1.50 1.75 2.0 TIME - SEC

TIME - SEC
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Fig. 20. Dive configuration pitch versus time.

Fig. 21. Dive configuration collective pitch.
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Fig. 22. Dive configuration lateral cyclic.
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Fig. 25. Inertial position for turn configuration.

Fig. 26. Turn configuration altitude versus time.
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Fig. 23. Dive configuration longitudinal cyclic.
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Fig. 24. Dive configuration tail rotor pitch. Fig. 27. Turn configuration roll versus time.
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Fig. 33. Turn configuration tail rotor pitch.

S 0fi | ^ } s state better than that of the level flight or dive. Note that
.6 1.0 1.5 2.0 2.5 3.0 3.5 40

TIME SEC in the turn flight path, the shape of the predicted roll

'8. Turn configuration pitch versus time. closely follows the desired trajectory. Examination of the
figures also reveals that the linear model attempts to follow

'9. Turn configuration yaw versus time. the trend of the desired for those flight paths which give rise to
maximum motion; i.e., examine the roll histograms. The

0.4 4PREDICTED osciHlatory nature of Fig. 19 may be explained by noting

0.2 that the system to be controlled is of the tenth order. Note
0.0 that the frequency content of the desired roll is quite low;

t -02 hence the control of the roll parameter is delegated a lower
>_ -0.2 -

NMINAL priority than the control responsible for controlling the
-.0.4 forward velocity. This is illustrated by Figs. 21 through 24

.5 1.0 1.5 2.0 2.5 3.0 35 4.0 which give the control histograms for the dive trajectory.

As might be expected, results of the climb flight path
are mirrored in the dive trajectory. This is very apparent

CONTROL GENE0ATED when comparing the time traces of pitch for both cases.
l . - ; ,The stability of the level flight might be questioned after

L]OM-tINiAL examination of the pitch channel for that particular
configuration. However, noting that the amplitude at the
end of 2 s is less than that obtained at 1.4 s gives an indi-

I..20 2.0 CO 352TI S40 cation that the trajectory is stable. Credence to this con-
0. Turn configuration collective pitch. jecture is given by examination of the pitch channel for

the tum/climb, i.e., the tum/climb consists of a level flight
for the first 2 s.

Having examined the characteristics of roll and pitch,
expectations are that the yaw channel would exhibit the
same type of performance. Reference [11] shows that
this is indeed true.

CONT GENERATED00 The turn/climb configuration exhibited very good
I_I_I_I_I_I_I__ agreement between the nominal and predicted trajectories.
5 20 I5 20 25 30TIME SEC3-5 40 Note that during the turn the vehicle simultaneously under-

'1. Turn configuration lateral cyclic. goes a climb, i.e., a constant rate of turn is not experienced.
In order to obtain the turn/climb trajectory, control
positions were taken from actual flight test data. These
control positions were input as nominal values into the non-

linear model which resulted in the tum/climb trajectory.
This trajectory was then input as the desired flight path
which the linear model attempted to fit. Figs. 25-33
illustratethe results obtained.

COaNTROLGENERATED- =

It is interesting to note that in all angular velocity chan-
nels the response in the linear model appears to lag behind
that of the desired flight path. Also, in every case con-
sidered the magnitude of the response is much larger than
that of the nominal. This is best illustrated by Fig. 12.
Cause of these anomalies can be explained by the linear

N5 160 550'S2.'0 40lS 310 3'S 41O model chosen to represent the nonlinear helicopter. In
32. Turn configuration longitudinal cyclic. selecting a suitable model to approximate the helicopter
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two linear configurations were initially considered. The
models considered were

6x, {(k + 1)T} = O(T) 6x(kT) + 0(T) 6u(kT) (22)

and

6xl {(k+ )T} = ()6x(k1) + (T, T- 1)6x{(k- 1)}

+ 0(T)Su(k) + r{T, T- 1}

* 6u{(k- l)T}. (23)

Equation (22) was chosen for the following reasons: 1)
references [111 and [13] indicate that it could indeed
approximate the nonlinear model, 2) a model similar to
(22) was used in [12], and 3) simplicity of (22) as com-
pared to the complexity of (23).

The anomalies mentioned above can be explained by
the omission in (22) of information contained in the coeffi-
cient matrices i and r of (23). By neglecting 4, informa-
tion regarding the frequency content of the system will be
lost. Similarly omission of r may result in generation of
a control law which exceeds the bounds of a feasible con-
trol.

In conclusion, this study demonstrated that control
techniques can be applied to a helicopter flight simulation
which allows the vehicle to follow a predetermined nominal
flight path. However, due to approximations in the linear
model, a technique had to be developed whereby a feasible
control law could be obtained. In order to achieve this,
an algorithm was developed to determine a weighting matrix
as a function of time. This technique can be implemented
on other systems with a similar effect.

References

[11 A. Gessow, and G. Meyers, Jr., Aerodynamics of the Helicop-
ter. New York: MacMillan, 1952.

[2] A. Nikolsky, Helicopter Analysis. New York: Wiley, 1951.
[3] D. Gyorog, "Helicopter rotor analysis," U.S. Army Weapons

Command Rep., Nov. 1970.
[4] A. Fermelia, J. Matson, and D. Gyorog, "Helicopter flight

path simulation, pt. I: Helicopter dynamics (ECOM) model,"
U.S. Army Weapons Command Rep., Oct. 1971.

[5] D. Gyorog, and A. Fermelia, "Helicopter flight path simula-
tion, pt. II: Pilot model preliminary analysis," U.S. Army
Weapons Command Rep., Oct. 1971.

[6] P. Benjamin, "A hierarchial model of a helicopter pilot,"
Human Factors, vol. R, pp. 361-374, Aug. 1970.

[7] A.L. Burgett, "A study of human operator performance
using regression analysis," NASA Rep. CR-1259, Jan. 1969.

[8] R.C. Dorf, Time-Domain Analysis and Design of Control
Systems. Reading, Mass.: Addison-Wesley, 1965.

[9] Y. Takahashi, M. Rabins, and D. Auslander, Control. Reading,
Mass.: Addison-Wesley, 1965.

[101 A.P. Sage, Optimum Systems Control. Englewood Cliffs, N.J.:
Prentice-Hall, 1968.

[11] A. Fermelia, "Development of helicopter flight path models
utilizing modern control techniques," Ph.D. diss., Dep.
Mechanical Engineering, Univ. Missouri-Rolla, Rolla, 1975.

[12] "Fundamentals of helicopter stability and control,"
Vertow Division of Boeing Airplane Co., Rep. R242, Feb.
1961.

[13] A. Fermelia, D. Gyorog, and V. Flanigan, "Helicopter motion-
Equation linearization," IEEE Trans. Aerosp. Electron. Syst.,
this issue, pp. 767-782.

FERMELIA ET AL.: DEVELOPMENT OF HELICOPTER FLIGHT PATH MODELS 791



A. Fermelia was born in Rock Springs, Wyo., on April 27, 1942. He received the B.S.
degree in mechanical engineering in 1964 from the University of Wyoming, Laramie, the
M.S. degree in engineering science in 1966 from the University of Califomia, San Diego,
and the Ph.D. degree in 1975 in mechanical engineering from the University of Missouri-
Rolla, Rolla.

From 1964 to 1967 he was employed by General Dynamics Convair Division where he
was a member of a propulsion group and later a member of the advanced dynamics section.
From 1967 to 1970 he was associated with the U.S. Naval Electronics Laboratory Center,
San Diego, Calif., where he was concerned with math modeling of a steam generating
system and application of estimation theory to the antisubmarine warfare problem.
In addition, he has served as a consultant to the U.S. Army Weapons Command, Rock
Island, Ill. Currently he is Senior Staff Officer with Hughes Aircraft Company, Aurora,
Colo., concerned with math modeling and application of estimation theory to physical
systems.

D.A. Gyorog received the B.S. and M.S. degrees in mechanical engineering from the Uni-
versity of Iowa, Iowa City, in 1954 and 1955, respectively, and the Ph.D. degree in
mechanical engineering from the University of Wisconsin, Madison, in 1963.

He is currently the Director of Small Arms Directorate, Rodman Laboratory, Rock
Island Arsenal, Rock Island, Ill. His engineering experience includes past associations
with the U.S. Army Aviation Systems Command, the Air Research Manufacturing Com-
pany, the Boeing Corporation, and NASA. In addition, he has held faculty positions as
Professor of Mechanical and Aerospace Engineering at the University of Missouri-Rolla
and at Arizona State University, Tempe.

Virgil J. Flanigan received the Ph.D. degree in mechanical engineering in 1968 from the
University of Missouri-Rolla.

He was appointed as Assistant Professor in mechanical engineering at the University of
Missouri-Rolla in 1967 and is now an Associate Professor. He has industrial experience
with the Boeing Co. in the Satum Program, the Western Electric Co. in the wired equip-
ment manufacturing area, and is a consultant to the naval Weapons Center, China Lake,
Calif., in the Optics and Guidance Group.

Dr. Flanigan is a member of the American Society of Mechanical Engineers and a
registered Professional Engineer in Missouri.

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS NOVEMBER 1976792


	Development of Helicopter Flight Path Models
	Recommended Citation

	Development of helicopter flight path models

