23 research outputs found

    Socioeconomic status and the incidence of non-central nervous system childhood embryonic tumours in Brazil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Childhood cancer differs from most common adult cancers, suggesting a distinct aetiology for some types of childhood cancer. Our objective in this study was to test the difference in incidence rates of 4 non-CNS embryonic tumours and their correlation with socioeconomic status (SES) in Brazil.</p> <p>Methods</p> <p>Data was obtained from 13 Brazilian population-based cancer registries (PBCRs) of neuroblastoma (NB), Wilms'tumour (WT), retinoblastoma (RB), and hepatoblastoma (HB). Incidence rates by tumour type, age, and gender were calculated per one million children. Correlations between social exclusion index (SEI) as an indicator of socioeconomic status (SES) and incidence rates was investigated using the Spearman's test.</p> <p>Results</p> <p>WT, RB, and HB presented with the highest age-adjusted incidence rates (AAIRs) in 1 to 4 year old of both genders, whereas NB presented the highest AAIR in ≤11 month-olds. However, differences in the incidence rates among PBCRs were observed. Higher incidence rates were found for WT and RB, whereas lower incidence rates were observed for NB. Higher SEI was correlated with higher incidences of NB (0.731; p = 0.0117), whereas no SEI correlation was observed between incidence rates for WT, RB, and HB. In two Brazilian cities, the incidence rates of NB and RB were directly correlated with SEI; NB had the highest incidence rates (14.2, 95% CI, 8.6-19.7), and RB the lowest (3.5, 95% CI, 0.7-6.3) in Curitiba (SEI, 0.730). In Natal (SEI, 0.595), we observed just the opposite; the highest incidence rate was for RB and the lowest was for NB (4.6, 95% CI, 0.1-9.1).</p> <p>Conclusion</p> <p>Regional variations of SES and the incidence of embryonal tumours were observed, particularly incidence rates for NB and RB. Further studies are necessary to investigate risk factors for embryonic tumours in Brazil.</p

    Genetic evaluation of dementia with Lewy bodies implicates distinct disease subgroups

    Get PDF
    The APOE locus is strongly associated with risk for developing Alzheimer's disease and dementia with Lewy bodies. In particular, the role of the APOE ϵ4 allele as a putative driver of α-synuclein pathology is a topic of intense debate. Here, we performed a comprehensive evaluation in 2466 dementia with Lewy bodies cases versus 2928 neurologically healthy, aged controls. Using an APOE-stratified genome-wide association study approach, we found that GBA is associated with risk for dementia with Lewy bodies in patients without APOE ϵ4 (P = 6.58 × 10-9, OR = 3.41, 95% CI = 2.25-5.17), but not with dementia with Lewy bodies with APOE ϵ4 (P = 0.034, OR = 1.87, 95%, 95% CI = 1.05-3.37). We then divided 495 neuropathologically examined dementia with Lewy bodies cases into three groups based on the extent of concomitant Alzheimer's disease co-pathology: Pure dementia with Lewy bodies (n = 88), dementia with Lewy bodies with intermediate Alzheimer's disease co-pathology (n = 66) and dementia with Lewy bodies with high Alzheimer's disease co-pathology (n = 341). In each group, we tested the association of the APOE ϵ4 against the 2928 neurologically healthy controls. Our examination found that APOE ϵ4 was associated with dementia with Lewy bodies + Alzheimer's disease (P = 1.29 × 10-32, OR = 4.25, 95% CI = 3.35-5.39) and dementia with Lewy bodies + intermediate Alzheimer's disease (P = 0.0011, OR = 2.31, 95% CI = 1.40-3.83), but not with pure dementia with Lewy bodies (P = 0.31, OR = 0.75, 95% CI = 0.43-1.30). In conclusion, although deep clinical data were not available for these samples, our findings do not support the notion that APOE ϵ4 is an independent driver of α-synuclein pathology in pure dementia with Lewy bodies, but rather implicate GBA as the main risk gene for the pure dementia with Lewy bodies subgroup

    Genome-wide structural variant analysis identifies risk loci for non-Alzheimer's dementias

    Get PDF
    We characterized the role of structural variants, a largely unexplored type of genetic variation, in two non-Alzheimer's dementias, namely Lewy body dementia (LBD) and frontotemporal dementia (FTD)/amyotrophic lateral sclerosis (ALS). To do this, we applied an advanced structural variant calling pipeline (GATK-SV) to short-read whole-genome sequence data from 5,213 European-ancestry cases and 4,132 controls. We discovered, replicated, and validated a deletion in TPCN1 as a novel risk locus for LBD and detected the known structural variants at the C9orf72 and MAPT loci as associated with FTD/ALS. We also identified rare pathogenic structural variants in both LBD and FTD/ALS. Finally, we assembled a catalog of structural variants that can be mined for new insights into the pathogenesis of these understudied forms of dementia

    Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture

    Get PDF
    The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia, and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer's disease and Parkinson's disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition

    Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.

    Get PDF
    We examined the role of repeat expansions in the pathogenesis of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) by analyzing whole-genome sequence data from 2,442 FTD/ALS patients, 2,599 Lewy body dementia (LBD) patients, and 3,158 neurologically healthy subjects. Pathogenic expansions (range, 40-64 CAG repeats) in the huntingtin (HTT) gene were found in three (0.12%) patients diagnosed with pure FTD/ALS syndromes but were not present in the LBD or healthy cohorts. We replicated our findings in an independent collection of 3,674 FTD/ALS patients. Postmortem evaluations of two patients revealed the classical TDP-43 pathology of FTD/ALS, as well as huntingtin-positive, ubiquitin-positive aggregates in the frontal cortex. The neostriatal atrophy that pathologically defines Huntington's disease was absent in both cases. Our findings reveal an etiological relationship between HTT repeat expansions and FTD/ALS syndromes and indicate that genetic screening of FTD/ALS patients for HTT repeat expansions should be considered

    Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic

    Get PDF
    Introduction Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality. Methods Prospective cohort study in 109 institutions in 41 countries. Inclusion criteria: children &lt;18 years who were newly diagnosed with or undergoing active treatment for acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, retinoblastoma, Wilms tumour, glioma, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, medulloblastoma and neuroblastoma. Of 2327 cases, 2118 patients were included in the study. The primary outcome measure was all-cause mortality at 30 days, 90 days and 12 months. Results All-cause mortality was 3.4% (n=71/2084) at 30-day follow-up, 5.7% (n=113/1969) at 90-day follow-up and 13.0% (n=206/1581) at 12-month follow-up. The median time from diagnosis to multidisciplinary team (MDT) plan was longest in low-income countries (7 days, IQR 3-11). Multivariable analysis revealed several factors associated with 12-month mortality, including low-income (OR 6.99 (95% CI 2.49 to 19.68); p&lt;0.001), lower middle income (OR 3.32 (95% CI 1.96 to 5.61); p&lt;0.001) and upper middle income (OR 3.49 (95% CI 2.02 to 6.03); p&lt;0.001) country status and chemotherapy (OR 0.55 (95% CI 0.36 to 0.86); p=0.008) and immunotherapy (OR 0.27 (95% CI 0.08 to 0.91); p=0.035) within 30 days from MDT plan. Multivariable analysis revealed laboratory-confirmed SARS-CoV-2 infection (OR 5.33 (95% CI 1.19 to 23.84); p=0.029) was associated with 30-day mortality. Conclusions Children with cancer are more likely to die within 30 days if infected with SARS-CoV-2. However, timely treatment reduced odds of death. This report provides crucial information to balance the benefits of providing anticancer therapy against the risks of SARS-CoV-2 infection in children with cancer
    corecore