75 research outputs found

    Design, Synthesis and Biological Investigation of 2-Anilino Triazolopyrimidines as Tubulin Polymerization Inhibitors with Anticancer Activities

    Get PDF
    A further investigation aiming to generate new potential antitumor agents led us to synthesize a new series of twenty-two compounds characterized by the presence of the 7-(3′,4′,5′-trimethoxyphenyl)-[1,2,4]triazolo[1,5-a]pyrimidine pharmacophore modified at its 2-position. Among the synthesized compounds, three were significantly more active than the others. These bore the substituents p-toluidino (3d), p-ethylanilino (3h) and 3′,4′-dimethylanilino (3f), and these compounds had IC50 values of 30–43, 160–240 and 67–160 nM, respectively, on HeLa, A549 and HT-29 cancer cells. The p-toluidino derivative 3d was the most potent inhibitor of tubulin polymerization (IC50: 0.45 µM) and strongly inhibited the binding of colchicine to tubulin (72% inhibition), with antiproliferative activity superior to CA-4 against A549 and HeLa cancer cell lines. In vitro investigation showed that compound 3d was able to block treated cells in the G2/M phase of the cell cycle and to induce apoptosis following the intrinsic pathway, further confirmed by mitochondrial depolarization and caspase-9 activation. In vivo experiments conducted on the zebrafish model showed good activity of 3d in reducing the mass of a HeLa cell xenograft. These effects occurred at nontoxic concentrations to the animal, indicating that 3d merits further developmental studies

    Structural Investigations on Novel Non-Nucleoside Inhibitors of Human Norovirus Polymerase

    Get PDF
    Human norovirus is the first cause of foodborne disease worldwide, leading to extensive outbreaks of acute gastroenteritis, and causing around 200,000 children to die annually in developing countries. No specific vaccines or antiviral agents are currently available, with therapeutic options limited to supportive care to prevent dehydration. The infection can become severe and lead to life-threatening complications in young children, the elderly and immunocompromised individuals, leading to a clear need for antiviral agents, to be used as treatments and as prophylactic measures in case of outbreaks. Due to the key role played by the viral RNA-dependent RNA polymerase (RdRp) in the virus life cycle, this enzyme is a promising target for antiviral drug discovery. In previous studies, following in silico investigations, we identified different small-molecule inhibitors of this enzyme. In this study, we rationally modified five identified scaffolds, to further explore structure–activity relationships, and to enhance binding to the RdRp. The newly designed compounds were synthesized according to multiple-step synthetic routes and evaluated for their inhibition of the enzyme in vitro. New inhibitors with low micromolar inhibitory activity of the RdRp were identified, which provide a promising basis for further hit-to-lead optimization

    In silico screening for human norovirus antivirals reveals a novel non-nucleoside inhibitor of the viral polymerase

    Get PDF
    Human norovirus causes approximately 219,000 deaths annually, yet there are currently no antivirals available. A virtual screening of commercially available drug-like compounds (~300,000) was performed on the suramin and PPNDS binding-sites of the norovirus RNA-dependent RNA polymerase (RdRp). Selected compounds (n = 62) were examined for inhibition of norovirus RdRp activity using an in vitro transcription assay. Eight candidates demonstrated RdRp inhibition (>25% inhibition at 10 μM), which was confirmed using a gel-shift RdRp assay for two of them. The two molecules were identified as initial hits and selected for structure-activity relationship studies, which resulted in the synthesis of novel compounds that were examined for inhibitory activity. Five compounds inhibited human norovirus RdRp activity (>50% at 10 μM), with the best candidate, 54, demonstrating an IC50 of 5.6 μM against the RdRp and a CC50 of 62.8 μM. Combinational treatment of 54 and the known RdRp site-B inhibitor PPNDS revealed antagonism, indicating that 54 binds in the same binding pocket. Two RdRps with mutations (Q414A and R419A) previously shown to be critical for the binding of site-B compounds had no effect on inhibition, suggesting 54 interacts with distinct site-B residues. This study revealed the novel scaffold 54 for further development as a norovirus antiviral

    Erratum to ‘Combining bioinformatics, cheminformatics, functional genomics and whole organism approaches for identifying epigenetic drug targets in Schistosoma mansoni’:[IJP Drugs Drug Resist. 8 (2018) 559–570]

    Get PDF
    Schistosomiasis endangers the lives of greater than 200 million people every year and is predominantly controlled by a single class chemotherapy, praziquantel (PZQ). Development of PZQ replacement (to combat the threat of PZQ insensitivity/resistance arising) or combinatorial (to facilitate the killing of PZQ-insensitive juvenile schistosomes) chemotherapies would help sustain this control strategy into the future. Here, we re-categorise two families of druggable epigenetic targets in Schistosoma mansoni, the histone methyltransferases (HMTs) and the histone demethylases (HDMs). Amongst these, a S. mansoni Lysine Specific Demethylase 1 (SmLSD1, Smp_150560) homolog was selected for further analyses. Homology modelling of SmLSD1 and in silico docking of greater than four thousand putative inhibitors identified seven (L1 – L7) showing more favourable binding to the target pocket of SmLSD1 vs Homo sapiens HsLSD1; six of these seven (L1 – L6) plus three structural analogues of L7 (L8 – L10) were subsequently screened against schistosomula using the Roboworm anthelmintic discovery platform. The most active compounds (L10 - pirarubicin > L8 – danunorubicin hydrochloride) were subsequently tested against juvenile (3 wk old) and mature (7 wk old) schistosome stages and found to impede motility, suppress egg production and affect tegumental surfaces. When compared to a surrogate human cell line (HepG2), a moderate window of selectivity was observed for the most active compound L10 (selectivity indices - 11 for schistosomula, 9 for juveniles, 1.5 for adults). Finally, RNA interference of SmLSD1 recapitulated the egg-laying defect of schistosomes co-cultivated in the presence of L10 and L8. These preliminary results suggest that SmLSD1 represents an attractive new target for schistosomiasis; identification of more potent and selective SmLSD1 compounds, however, is essential. Nevertheless, the approaches described herein highlight an interdisciplinary strategy for selecting and screening novel/repositioned anti-schistosomals, which can be applied to any druggable (epigenetic) target encoded by the parasite's genome. Keywords: Anthelmintic drug discovery, Neglected tropical diseases, Schistosoma mansoni, Epigenetics, Lysine specific demethylas

    Anti-schistosomal activities of quinoxaline-containing compounds: From hit identification to lead optimisation

    Get PDF
    Schistosomiasis is a neglected disease of poverty that is caused by infection with blood fluke species contained within the genus Schistosoma. For the last 40 years, control of schistosomiasis in endemic regions has predominantly been facilitated by administration of a single drug, praziquantel. Due to limitations in this mono-chemotherapeutic approach for sustaining schistosomiasis control into the future, alternative anti-schistosomal compounds are increasingly being sought by the drug discovery community. Herein, we describe a multi-pronged, integrated strategy that led to the identification and further exploration of the quinoxaline core as a promising anti-schistosomal scaffold.Firstly, phenotypic screening of commercially available small molecules resulted in the identification of a moderately active hit compound against Schistosoma mansoni (1, EC50 = 4.59 μM on schistosomula). Secondary exploration of the chemical space around compound 1 led to the identification of a quinoxaline-core containing, non-genotoxic lead (compound 22). Compound 22 demonstrated substantially improved activities on both intra-mammalian (EC50 = 0.44 μM, 0.20 μM and 84.7 nM, on schistosomula, juvenile and adult worms, respectively) and intra-molluscan (sporocyst) S. mansoni lifecycle stages. Further medicinal chemistry optimisation of compound 22, resulting in the generation of 20 additional analogues, improved our understanding of the structure-activity relationship and resulted in considerable improvements in both anti-schistosome potency and selectivity (e.g. compound 30; EC50 = 2.59 nM on adult worms; selectivity index compared to the HepG2 cell line = 348). Some derivatives of compound 22 (e.g. 31 and 33) also demonstrated significant activity against the two other medically important species, Schistosoma haematobium and Schistosoma japonicum. Further optimisation of this class of anti-schistosomal is ongoing and could lead to the development of an urgently needed alternative to praziquantel for assisting in schistosomiasis elimination strategies

    In silico screening for human norovirus antivirals reveals a novel non-nucleoside inhibitor of the viral polymerase

    Get PDF
    Human norovirus causes approximately 219,000 deaths annually, yet there are currently no antivirals available. A virtual screening of commercially available drug-like compounds (~300,000) was performed on the suramin and PPNDS binding-sites of the norovirus RNA-dependent RNA polymerase (RdRp). Selected compounds (n = 62) were examined for inhibition of norovirus RdRp activity using an in vitro transcription assay. Eight candidates demonstrated RdRp inhibition (>25% inhibition at 10 μM), which was confirmed using a gel-shift RdRp assay for two of them. The two molecules were identified as initial hits and selected for structure-activity relationship studies, which resulted in the synthesis of novel compounds that were examined for inhibitory activity. Five compounds inhibited human norovirus RdRp activity (>50% at 10 μM), with the best candidate, 54, demonstrating an IC50 of 5.6 μM against the RdRp and a CC50 of 62.8 μM. Combinational treatment of 54 and the known RdRp site-B inhibitor PPNDS revealed antagonism, indicating that 54 binds in the same binding pocket. Two RdRps with mutations (Q414A and R419A) previously shown to be critical for the binding of site-B compounds had no effect on inhibition, suggesting 54 interacts with distinct site-B residues. This study revealed the novel scaffold 54 for further development as a norovirus antiviral

    Rational modifications, synthesis and biological evaluation of new potential antivirals for RSV designed to target the M2-1 protein

    Get PDF
    Respiratory syncytial virus (RSV) is the main cause of lower respiratory tract diseases in infants and young children, with potentially serious and fatal consequences associated with severe infections. Despite extensive research efforts invested in the identification of therapeutic measures, no vaccine is currently available, while treatment options are limited to ribavirin and palivizumab, which both present significant limitations. While clinical and pre-clinical candidates mainly target the viral fusion protein, the nucleocapsid protein or the viral polymerase, our focus has been the identification of new antiviral compounds targeting the viral M2-1 protein, thanks to the presence of a zinc-ejecting group in their chemical structure. Starting from an anti-RSV hit we had previously identified with an in silico structure-based approach, we have designed, synthesised and evaluated a new series of dithiocarbamate analogues, with which we have explored the antiviral activity of this scaffold. The findings presented in this work may provide the basis for the identification of a new antiviral lead to treat RSV infections
    • …
    corecore