3 research outputs found

    First genetic characterisation of multidrug-resistant Mycobacterium tuberculosis isolates from Algeria

    No full text
    International audienceObjectives: To characterise the genotypes of multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) isolated in Algeria, where there is a low MDR-MTB incidence rate.Methods: Ten MDR isolates and one resistant to isoniazid were investigated by PCR-Sanger sequencing for 10 loci involved in resistance. Amplicon-based next generation sequencing (NGS) of 15 loci was additionally performed on isolates harbouring novel mutations.Results: Sanger and amplicon-NGS provided the same results as with GenoType kits. Mutations known to be associated with resistance were described for most isolates: rpoB S531L in seven of 10 rifampicin-R MTB isolates, katG S315T in nine of 11 isoniazid-R, and promoter inhA c-15t in three of 11, embB M306V or M306I in two of two ethambutol-R, rpsL K43R in four of eight or rrs a514c associated with gidB L16R in streptomycin-R, gyrA A90V in the ofloxacin-R pre-XDR isolate. New and rare mutations were also described in rpoB (deletion 512-513-514), katG (S315R, M126I/ R496L), gidB (V124G, E92A, V139A, G37V), and gyrA (P8A). Mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) profiles were similar for three isolates (lineage Cameroon), indicating a possible clonal diffusion in epidemiologically unrelated patients.Conclusions: Resistant MTB isolates in Algeria harbour resistance genotypes similar to other countries, but some rare patterns may result from selection and transmission processes inherent to the country

    First genetic characterisation of multidrug-resistant Mycobacterium tuberculosis isolates from Algeria

    No full text
    International audienceObjectives: To characterise the genotypes of multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) isolated in Algeria, where there is a low MDR-MTB incidence rate.Methods: Ten MDR isolates and one resistant to isoniazid were investigated by PCR-Sanger sequencing for 10 loci involved in resistance. Amplicon-based next generation sequencing (NGS) of 15 loci was additionally performed on isolates harbouring novel mutations.Results: Sanger and amplicon-NGS provided the same results as with GenoType kits. Mutations known to be associated with resistance were described for most isolates: rpoB S531L in seven of 10 rifampicin-R MTB isolates, katG S315T in nine of 11 isoniazid-R, and promoter inhA c-15t in three of 11, embB M306V or M306I in two of two ethambutol-R, rpsL K43R in four of eight or rrs a514c associated with gidB L16R in streptomycin-R, gyrA A90V in the ofloxacin-R pre-XDR isolate. New and rare mutations were also described in rpoB (deletion 512-513-514), katG (S315R, M126I/ R496L), gidB (V124G, E92A, V139A, G37V), and gyrA (P8A). Mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) profiles were similar for three isolates (lineage Cameroon), indicating a possible clonal diffusion in epidemiologically unrelated patients.Conclusions: Resistant MTB isolates in Algeria harbour resistance genotypes similar to other countries, but some rare patterns may result from selection and transmission processes inherent to the country
    corecore