18 research outputs found

    Experimental and numerical study of a micro-cogeneration Stirling unit under diverse conditions of the working fluid

    Get PDF
    Micro-cogeneration Stirling units are promising for residential applications because of high total efficiencies, favorable ratios of thermal to electrical powers and low CO as well as NOx emissions. This work focuses on the experimental and the numerical analysis of a commercial unit generating 8 kW of hot water (up to 15 kW with an auxiliary burner) and 1 kW of electricity burning natural gas. In the experimental campaign, the initial pressure of the working fluid is changed in a range from 9 to 24 barg – 20 barg being the nominal value – while the inlet temperature of the water loop and its mass flow rate are kept at the nominal conditions of, respectively, 50°C and 0.194 kg/s. The experimental results indicate clearly that the initial pressure of the working fluid – Nitrogen – affects strongly the net electrical power output and efficiency. The best performance for the output and efficiency of 943 W and 9.6% (based on the higher heating value of the burnt natural gas) are achieved at 22 barg. On the other hand, the thermal power trend indicates a maximum value of 8420 W at the working pressure of 24 barg, which corresponds to a thermal efficiency of 84.7% (again based on higher heating value). Measurements are coupled to a detailed model based on a modification of the work by Urieli and Berchowitz. Thanks to the tuning with the experimental results, the numerical model allows investigating the profiles of the main thermodynamic parameters and heat losses during the cycle, as well as estimating those physical properties that are not directly measurable. The major losses turn to be the wall parasitic heat conduction from heater to cooler and the non-unitary effectiveness of the regenerator

    Modeling and Testing of a Micro-cogeneration Stirling Engine Under Diverse Conditions of the Working Fluid

    Get PDF
    Abstract Micro-cogeneration Stirling engines are promising for residential applications. This work focuses on the experimental and numerical analyses of a commercial unit generating 8 kW of hot water and 1 kW of electricity burning natural gas. Measurements are coupled to a detailed model based on a modification of Urieli and Berchowitz's work. The results indicate that the thermal efficiency is influenced by the water loop inlet temperature, varying from 90% at 30 °C to 84% at 70 °C (HHV-based). The measured and simulated powers of the engine are in the 900-964 W range depending on the water temperature and differ by less than 4%. Net electric efficiency of the engine is 15% and of the whole cogeneration unit above 9% (HHV-based). Helium instead of Nitrogen as working fluid is expected to increase the performance

    Environmental Determinants of the Distribution and Abundance of the Ants, Lasiophanes picinus and L. valdiviensis, in Argentina

    Get PDF
    The distribution and abundance variation of the terrestrial ants, Lasiophanes picinus and Lasiophanes valdiviensis Emery (Formicinae: Lasiini), which are endemic in Patagonia (Argentina and Chile), are described and a set of environmental factors are examined to explain the observed patterns. Ants were collected using 450 pitfall traps arranged in 50, 100 m2 grid plots each with nine traps within a roughly 150 Ă— 150 km area representative of the subantartic-patagonian transition of Argentina. Five sampling periods each 8-days long were carried out between November 2004 and March 2006. To understand the distributional patterns and their link to environmental variables discriminant analysis was used. Path analysis was performed to test for direct and indirect effects of a set of environmental variables on species abundance variation. L. picinus was more frequently captured and attained higher abundance in the forests, while L. valdiviensis was more frequently captured and more abundant in the scrubs. The maximum daily temperature and mean annual precipitation explained L. picinus distribution (i.e. presence or absence) with an accuracy of 90%. L. valdiviensis distribution was predicted with almost 70% accuracy, taking into account herbal richness. The maximum daily temperature was the only climatic variable that affected ant abundance directly; an increase in temperature led to an increase of L. picinus abundance and a decrease of L. valdiviensis abundance. The amount of resources, as indicated by the percent plant cover, explained the variation of the abundance of both species better than the variety of resources as indicated by plant richness (i.e. models including plant richness had low fit or no fit at all). A direct effect of habitat use by cattle was found, as indicated by the amount of feces in the plots, only when variables related to the amount of resources were replaced by variables with less explanatory power related to the variety of resources. This study provides new data on the ecology of Lasiophanes species in relation to existing hypotheses proposed to explain patterns of abundance variation. Evidence is provided that changes in temperature (i.e. global climate change) may have important consequences on populations of these species

    Aspetti tecnologici

    No full text

    Structural brain anomalies in Cri-du-Chat syndrome: MRI findings in 14 patients and possible genotype-phenotype correlations

    No full text
    Introduction: Cri-du-Chat Syndrome (CdCS) is a genetic condition due to deletions showing different breakpoints encompassing a critical region on the short arm of chromosome 5, located between p15.2 and p15.3, first defined by Niebuhr in 1978. The classic phenotype includes a characteristic cry, peculiar facies, microcephaly, growth retardation, hypotonia, speech and psychomotor delay and intellectual disability. A wide spectrum of clinical manifestations can be attributed to differences in size and localization of the 5p deletion. Several critical regions related to some of the main features (such as cry, peculiar facies, developmental delay) have been identified. The aim of this study is to further define the genotype-phenotype correlations in CdCS with particular regards to the specific neuroradiological findings. Patients and methods: Fourteen patients with 5p deletions have been included in the present study. Neuroimaging studies were conducted using brain Magnetic Resonance Imaging (MRI). Genetic testing was performed by means of comparative genomic hybridization (CGH) array at 130 kb resolution. Results: MRI analyses showed that isolated pontine hypoplasia is the most common finding, followed by vermian hypoplasia, ventricular anomalies, abnormal basal angle, widening of cavum sellae, increased signal of white matter, corpus callosum anomalies, and anomalies of cortical development. Chromosomal microarray analysis identified deletions ranging in size from 11,6 to 33,8 Mb on the short arm of chromosome 5. Then, we took into consideration the overlapping and non-overlapping deleted regions. The goal was to establish a correlation between the deleted segments and the neuroradiological features of our patients. Conclusions: Performing MRI on all the patients in our cohort, allowed us to expand the neuroradiological phenotype in CdCS. Moreover, possible critical regions associated to characteristic MRI findings have been identified
    corecore