1,593 research outputs found

    Expression of Sympathetic Nervous System Genes in Lamprey Suggests Their Recruitment for Specification of a New Vertebrate Feature

    Get PDF
    The sea lamprey is a basal, jawless vertebrate that possesses many neural crest derivatives, but lacks jaws and sympathetic ganglia. This raises the possibility that the factors involved in sympathetic neuron differentiation were either a gnathostome innovation or already present in lamprey, but serving different purposes. To distinguish between these possibilities, we isolated lamprey homologues of transcription factors associated with peripheral ganglion formation and examined their deployment in lamprey embryos. We further performed DiI labeling of the neural tube combined with neuronal markers to test if neural crest-derived cells migrate to and differentiate in sites colonized by sympathetic ganglia in jawed vertebrates. Consistent with previous anatomical data in adults, our results in lamprey embryos reveal that neural crest cells fail to migrate ventrally to form sympathetic ganglia, though they do form dorsal root ganglia adjacent to the neural tube. Interestingly, however, paralogs of the battery of transcription factors that mediate sympathetic neuron differentiation (dHand, Ascl1 and Phox2b) are present in the lamprey genome and expressed in various sites in the embryo, but fail to overlap in any ganglionic structures. This raises the intriguing possibility that they may have been recruited during gnathostome evolution to a new function in a neural crest derivative

    Veštaško razmnožavanje i reproduktivne osobine čikova (Misgurnus Fossilis)

    Get PDF
    U našem istraživanju je dvanaest ženki i osam mužjaka čikova veštački reprodukovano pre sezone mresta. Riba je uneta u laboratorijske tankove u rano proleće i ženke su tretirane sa 10 mg/kg telesne težine sa CP (ekstrakt hipofize šarana), dok su mužjaci hipofizirani sa 5mg/kg telesne težine radi izazivanja ovulacije i spermijacije. Ženke su ovulirale u narednih 18 do 24 časa i posle istiskivanja jaja su bila oplođena. Vrednosti pseudogonadosomatskog indeksa PGSIkod 4 ženke veoma su varirale (3.6 – 22.2%), stopa oplođenja je varirala od 30.34 do 93.81 % posle 24 časa od oplođenja. Tri dana po oplođenju larve su se izvalile (14.84-91.8%) i započele sa prvom egzogenom hranom šestog dana. Čikov se može razmnožavati kao i šaranske vrste u mrestilištima, jedina poteškoća je mala količina gameta. Veštačko razmnožavanje i uzgoj larvi može da pomogne u značajnom jačanju populacija, tako da bi bila moguća repopulacija već redukovanih populacijaii stvaranje novih staništakoji odgovaraju ovoj vrsti. Vijabilne larve iz interspecijske hibridizacije su se izlegle i na osnovu njihove morfologije mlađ nije ličila na hibride, što bi moglo da ukaže na sposobnost aseksualnog razmnožavanja. Genetička analiza nije pokazala genom mužjaka kod mlađi. F1R1 potomci su bili 50% tetraploidi (4n=100)i 50 % heksaploidi (6n=150). Ovo je prvi rezultat stvaranja heksaploida (broj hromozoma 150) čikova u laboratorijskim uslovima

    ChIP-Chip Designs to Interrogate the Genome of Xenopus Embryos for Transcription Factor Binding and Epigenetic Regulation

    Get PDF
    Chromatin immunoprecipitation combined with genome tile path microarrays or deep sequencing can be used to study genome-wide epigenetic profiles and the transcription factor binding repertoire. Although well studied in a variety of cell lines, these genome-wide profiles have so far been little explored in vertebrate embryos. genome. In particular, a whole-genome microarray design was used to identify active promoters by close proximity to histone H3 lysine 4 trimethylation. A second microarray design features these experimentally derived promoter regions in addition to currently annotated 5′ ends of genes. These regions truly represent promoters as shown by binding of TBP, a key transcription initiation factor. embryos

    Optimisation of Embryonic and Larval ECG Measurement in Zebrafish for Quantifying the Effect of QT Prolonging Drugs

    Get PDF
    Effective chemical compound toxicity screening is of paramount importance for safe cardiac drug development. Using mammals in preliminary screening for detection of cardiac dysfunction by electrocardiography (ECG) is costly and requires a large number of animals. Alternatively, zebrafish embryos can be used as the ECG waveform is similar to mammals, a minimal amount of chemical is necessary for drug testing, while embryos are abundant, inexpensive and represent replacement in animal research with reduced bioethical concerns. We demonstrate here the utility of pre-feeding stage zebrafish larvae in detection of cardiac dysfunction by electrocardiography. We have optimised an ECG recording system by addressing key parameters such as the form of immobilization, recording temperature, electrode positioning and developmental age. Furthermore, analysis of 3 days post fertilization (dpf) zebrafish embryos treated with known QT prolonging drugs such as terfenadine, verapamil and haloperidol led to reproducible detection of QT prolongation as previously shown for adult zebrafish. In addition, calculation of Z-factor scores revealed that the assay was sensitive and specific enough to detect large drug-induced changes in QTc intervals. Thus, the ECG recording system is a useful drug-screening tool to detect alteration to cardiac cycle components and secondary effects such as heart block and arrhythmias in zebrafish larvae before free feeding stage, and thus provides a suitable replacement for mammalian experimentation

    Expression and knockdown of zebrafish folliculin suggests requirement for embryonic brain morphogenesis.

    Get PDF
    BACKGROUND: Birt-Hogg-Dubé syndrome (BHD) is a dominantly inherited familial cancer syndrome characterised by the development of benign skin fibrofolliculomas, multiple lung and kidney cysts, spontaneous pneumothorax and susceptibility to renal cell carcinoma. BHD is caused by mutations in the gene encoding Folliculin (FLCN). Little is known about what FLCN does in a healthy individual and how best to treat those with BHD. As a first approach to developing a vertebrate model for BHD we aimed to identify the temporal and spatial expression of flcn transcripts in the developing zebrafish embryo. To gain insights into the function of flcn in a whole organism system we generated a loss of function model of flcn by the use of morpholino knockdown in zebrafish. RESULTS: flcn is expressed broadly and upregulated in the fin bud, somites, eye and proliferative regions of the brain of the Long-pec stage zebrafish embryos. Together with knockdown phenotypes, expression analysis suggest involvement of flcn in zebrafish embryonic brain development. We have utilised the zFucci system, an in vivo, whole organism cell cycle assay to study the potential role of flcn in brain development. We found that at the 18 somite stage there was a significant drop in cells in the S-M phase of the cell cycle in flcn morpholino injected embryos with a corresponding increase of cells in the G1 phase. This was particularly evident in the brain, retina and somites of the embryo. Timelapse analysis of the head region of flcn morpholino injected and mismatch control embryos shows the temporal dynamics of cell cycle misregulation during development. CONCLUSIONS: In conclusion we show that zebrafish flcn is expressed in a non-uniform manner and is likely required for the maintenance of correct cell cycle regulation during embryonic development. We demonstrate the utilisation of the zFucci system in testing the role of flcn in cell proliferation and suggest a function for flcn in regulating cell proliferation in vertebrate embryonic brain development.Funding for this project was provided by the Myrovlytis Trust and a KWF travel grant to Monique Luijten.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s12861-016-0119-

    Genotype-Independent Transmission of Transgenic Fluorophore Protein by Boar Spermatozoa

    Get PDF
    Recently, we generated transposon-transgenic boars (Sus scrofa), which carry three monomeric copies of a fluorophore marker gene. Amazingly, a ubiquitous fluorophore expression in somatic, as well as in germ cells was found. Here, we characterized the prominent fluorophore load in mature spermatozoa of these animals. Sperm samples were analyzed for general fertility parameters, sorted according to X and Y chromosome-bearing sperm fractions, assessed for potential detrimental effects of the reporter, and used for inseminations into estrous sows. Independent of their genotype, all spermatozoa were uniformly fluorescent with a subcellular compartmentalization of the fluorophore protein in postacrosomal sheath, mid piece and tail. Transmission of the fluorophore protein to fertilized oocytes was shown by confocal microscopic analysis of zygotes. The monomeric copies of the transgene segregated during meiosis, rendering a certain fraction of the spermatozoa non-transgenic (about 10% based on analysis of 74 F1 offspring). The genotype-independent transmission of the fluorophore protein by spermatozoa to oocytes represents a non-genetic contribution to the mammalian embryo

    Enhancer trapping and annotation in Zebrafish mediated with Sleeping Beauty, piggyBac and Tol2 transposons

    Get PDF
    Although transposon-mediated enhancer trapping (ET) is successfully applied in diverse models, the efficiency of various transposon systems varies significantly, and little information is available regarding efficiency of enhancer trapping by various transposons in zebrafish. Most potential enhancers (Ens) still lack evidence of actual En activity. Here, we compared the differences in ET efficiency between sleeping beauty (SB), piggyBac (PB) and Tol2 transposons. Tol2 represented the highest germline transfer efficiencies at 55.56% (NF0 = 165), followed by SB (38.36%, NF0 = 151) and PB (32.65%, NF0 = 149). ET lines generated by the Tol2 transposon tended to produce offspring with a single expression pattern per line, while PB and SB tended to generate embryos with multiple expression patterns. In our tests, 10 putative Ens (En1⁻10) were identified by splinkerette PCR and comparative genomic analysis. Combining the GFP expression profiles and mRNA expression patterns revealed that En1 and En2 may be involved in regulation of the expression of dlx1a and dlx2a, while En6 may be involved in regulation of the expression of line TK4 transgene and rps26, and En7 may be involved in the regulation of the expression of wnt1 and wnt10b. Most identified Ens were found to be transcribed in zebrafish embryos, and their regulatory function may involve eRNAs

    Barcoded DNA-Tag Reporters for Multiplex Cis-Regulatory Analysis

    Get PDF
    Cis-regulatory DNA sequences causally mediate patterns of gene expression, but efficient experimental analysis of these control systems has remained challenging. Here we develop a new version of “barcoded" DNA-tag reporters, “Nanotags" that permit simultaneous quantitative analysis of up to 130 distinct cis-regulatory modules (CRMs). The activities of these reporters are measured in single experiments by the NanoString RNA counting method and other quantitative procedures. We demonstrate the efficiency of the Nanotag method by simultaneously measuring hourly temporal activities of 126 CRMs from 46 genes in the developing sea urchin embryo, otherwise a virtually impossible task. Nanotags are also used in gene perturbation experiments to reveal cis-regulatory responses of many CRMs at once. Nanotag methodology can be applied to many research areas, ranging from gene regulatory networks to functional and evolutionary genomics
    corecore