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Highlights 

However several transgenic fish lines have been developed in the last few years for studying 

and monitoring estrogenic substances, the transgenic zebrafish line (Tg(vtg1:mCherry)) we 

present here might be a useful tool in endocrine disruptor (EDC) research. The paper 

describes the following: 

 The established transgenic zebrafish line Tg(vtg1:mCherry) expresses the reporter 

(mCherry) under the control of the promoter of the zebrafish vitellogenin1 gene. 

 The incorporated 3357 bp promoter region carries 26 natural ERE sequences and 

is the longest natural promoter region among vitellogenin transgenic lines, 

 The endogenous vitellogenin and the reporter are produced only in the left hepatic 

lobe of 5 dpf zebrafish embryos and show similar spatial expression pattern. 
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 Tg(vtg1:mCherry) embryos can detect 17-ß-estradiol from a concentration of 100 

ng/L, 17-α-ethynilestradiol from 1 ng/L, zearalenone from 100 ng/L and 

bisphenol-A from 1 mg/L. 

 Tg(vtg1:mCherry) adults appeared to be more sensitive, with detectable transgene 

activity from 5 ng/L 17-ß-estradiol concentration. 

 Tg(vtg1:mCherry) was also suitable for the direct measurement of estrogenicity in 

wastewater samples without sample extraction. 

 

Abstract 

 

Environmental estrogens are a serious concern worldwide due to their ubiquity and adverse 

ecotoxicological and health effects. Chemical structure of these substances is highly diverse, 

therefore estrogenicity cannot be predicted on the basis of molecular structure. Furthermore, 

estimation of estrogenicity of environmental samples based on chemical analytics of suspects 

is difficult given the complex interaction of chemicals and the impact on estrogenicity. The 

full estrogenic impact of an environmental sample can thus only be revealed by a series of 

sensitive in vitro and in vivo ecotoxicological tests. Herein we describe a vitellogenin reporter 

transgenic zebrafish line (Tg(vtg1:mCherry)) that enables the detection of estrogenicity in the 

environmentally relevant, low concentration ranges in embryonic tests that are in accordance 

with 3Rs and relevant animal welfare regulations. 

The transgene construct used for the development of Tg(vtg1:mCherry) carried a long (3.4 

kbp) natural vitellogenin-1 promoter sequence with a high number of ERE sites. 

A test protocol was developed based on our finding that the endogenous vitellogenin and the 

reporter show similar spatial expression pattern and both endogenous and vitellogenin reporter 

is only produced in the left hepatic lobe of 5 dpf zebrafish embryos. 

Seven generations of Tg(vtg1:mCherry) have been established, and the estrogen 

responsiveness was tested with different estrogenic substances and wastewater samples. 

Embryos were exposed from 3 to 5 days post fertilization (dpf). Fluorescence in embryos 

could be detected upon treatment with 17-ß-estradiol from a concentration of 100 ng/L, 17-α-

ethynilestradiol from 1 ng/L, zearalenone from 100 ng/L and bisphenol-A from 1 mg/L. In the 

adult stage transgene activity appeared to be more sensitive to estrogen treatment, with 

detectable transgene activity from 5 ng/L 17-ß-estradiol concentration. The transgenic line 

Tg(vtg1:mCherry) was also suitable for the direct measurement of estrogenicity in wastewater 
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samples without sample extraction. The detection of estrogenic activity using the reporter line 

was confirmed by the bioluminescent yeast estrogen screen. 

 

Keywords: transgenic, vitellogenin, endocrine disrupting chemicals, in vivo, YES 

 

1 Introduction 

 

Environmental estrogens are widely present in the aquatic environment. Due to their 

incomplete breakdown parent compounds and derivatives are detected in the effluents of 

wastewater treatment plants (WWTPs) and surface waters in pg/L to μg/L concentrations 

(Wright-Walters and Volz, 2009). Exposure to environmental estrogens may have serious 

consequences for wildlife populations including feminization of males, altered sex ratios, 

reduced fertility, other gonadal and reproductive abnormalities, immune system and cardiac 

disorders, or development of tumors (Sumpter 2005, Mills and Chichester 2005, Kavlock et al., 

1996) 

Chemical structure of estrogenic substances is highly diverse, therefore estrogenicity cannot 

be predicted solely on the basis of molecular structure. Furthermore, many components in 

environmental samples and their combined effects are unknown and hence deduction of 

estrogenic effects from chemical analysis and detection of know estrogenic compounds could 

be difficult. The full estrogenic impact of an environmental sample can thus only be revealed 

by a complex series of ecotoxicological tests on in vitro and in vivo model systems. Screening 

estrogenic substances in aquatic samples has become a major focus for researchers and 

regulatory authorities in the last two decades, however, due to the high cost and the lack of 

infrastructure these tests are still not part of routine water quality programs in most countries 

(WHO 2012).  

The majority of screening protocols and guidelines proposed by OECD (revised in 2003) is 

based upon the measurement of estrogen receptor (ER) activation in in vitro model systems 

(e.g. Competitive Estrogen Receptor Binding Assay, OECD-TG-455, 457, 493) (OECD 2012) 

or in vivo animal models (such as fish), based on the protein level of estrogen sensitive genes 

(estrogen receptor (ER) and vitellogenin (vtg)) (OECD-TG-229 and 230) (OECD 2012) as 

biomarker. The gene product is usually measured by molecular biological tools and involves 

the sacrifice of the animal model. Most of these tests are using fish from protected life stages. 

As animal protection laws are becoming stricter, there is an increasing demand for alternative 
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test systems by which the number and suffering of experimental animals can be minimized or 

replaced. It is also possible to measure VTG level in the mucus of the epidermis with non-

invasive procedures (Allner et al. 2016), however only in later developmental stages. 

Zebrafish (Danio rerio) can be successfully used for investigating the mode of action of 

estrogenic substances and their reproductive and developmental effects (Segner, 2009). 

Toxicity including organ, tissue and cellular phenotypes can be monitored in the transparent, 

ex utero developing embryo. In addition, embryos of zebrafish up to the free feeding age at 5 

days post fertilization (5 dpf) are considered as non-protected life stages by the EU Directive 

2010/63/EU and relevant national directives and hence represent replacement method for 

testing of (adult) animals (Strähle et al. 2012). 

Several zebrafish lines have been developed recently for the detection of estrogen toxicity. 

Most of these express reporters under the control of estrogen response elements (EREs) and 

are used to visualize the response of estrogen sensitive tissues, estrogen receptor subtype 

specific response and developmental dynamics of estrogen sensitive tissues (Legler et al., 

2000, Gorelick and Halpern 2011, Lee et al., 2012). 

Biosensor fish lines (medaka and zebrafish) and transient systems have also been developed 

with tissue specific promoters of biomarker genes (cyp19a1b, vitellogenin, choriogenin H). 

The most popular biomarker gene in the detection of estrogenicity is vitellogenin. (Wallace 

and Jared, 1968; Lazier and McKay, 1993; Tyler et al., 1999). Vitellogenin transgenic medaka 

(Zeng et al. 2005), zebrafish (ere:zvtg1-gfp) lines (Chen et al, 2010) and transient systems 

(Kim et al., 2009, Lee et al., 2012) have been generated previously, however, sensitivity was 

not tested for the detection of environmentally relevant estrogen concentrations. The 

cyp19a1b-gfp transgenic zebrafish line was shown to detect environmental estrogenicity in 

embryonic stages (Tong et al., 2009, Brion et al., 2012, Petersen et al., 2013, Fetter et al., 

2014). However the fluorescent area represents a relatively small part of the brain and the 

gene is expressed at a basal level in controls too. Recently an estrogen sensitive choriogenin-

H transgenic medaka line, sensitive to the lowest observable estrogen concentration causing 

physiological effects in medaka (15 ng/L 17-α-ethynilestradiol, EE2) has also been developed 

(Spirhanzlova et al., 2016). Besides these, zebrafish cell based in vivo assays are used and are 

capable of detecting well-known estrogenic ligands, but recent study showed that in vivo 

systems show better sensitivity than in vitro assays (Sonavane et al., 2016). 

Routine estrogenicity assays demand the development of new, sensitive biosensor 

models, in which endogenous gene function is in accordance with fluorescent activity. 
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Environmental toxicology also needs models for detecting environmentally relevant estrogen 

concentrations and for studying the effects of environmental estrogens extensively. In this 

report our aim was to develop and characterize a sensitive vitellogenin reporter transgenic 

zebrafish line (Tg(vtg1:mCherry)) and to develop a test protocol for efficient detection of 

estrogenicity in vivo even in environmental samples. 

 

2 Materials and methods 

2.1 Fish maintenance 

All experiments were performed on a laboratory-bred strain (AB) of zebrafish (Danio rerio). 

Prior to treatments fish were maintained in a special zebrafish recirculation system (ZebTEC, 

Tecniplast S.p.a.) under standard laboratory conditions (at 25.5±0.5°C with 14 hour light-10 

hour dark cycle, oxygen level: ≥80% of saturation, pH: 7±0.2 conductivity 525±50 μS/m - all 

these parameters were automatically controlled by the ZebTEC system). 

Adults were fed twice a day with complete fish food (zebrafish basic food, Special Diets 

Services /SDS/) supplemented with freshly hatched live Artemia nauplii twice a week. Larvae 

after the free swimming age were fed three times a day with fish food, supplemented with 

Artemia from 10 dpf (days post fertilization). 

Fish were placed in breeding tanks (Tecniplast S.p.a.) in the afternoon the day before the 

experiment and spawning was triggered by the onset of the light cycle on the next morning. 

One hour after the onset of the light cycle eggs were harvested and normally developing 

embryos were selected under a microscope. 

All embryo handling, injections and treatments of eggs and embryos were carried out in 

“system water” from the recirculation system. 

Experiments were carried out in laboratories possessing required licences for animal 

experimentation (SF/6-8/2014, SF/6-6/2014, XIV-I-001/2303-4/2012)  

 

2.2 Establishment of the vtg1-mCherry transgene construct 

The putative transcription start site was identified upstream the vtg-1 coding sequence by 

PROSCAN 1.7 (Prestridge, 1995). Then the upstream sequence was screened for elements 

needed for the estrogen sensitivity of the construct (EREs - Estrogen Response Elements) by 

DRAGON ERE Finder (Bajic et al., 2003), ALGEN PROMO (Messeguer et al., 2002, Farré 
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et al., 2003) and MATINSPECTOR (GenoMatix) (Quandt et al., 1995, Cartharius et al., 2005) 

softwares and manual sequence analysis. 

Primers were designed for the amplification of a 3357 bp promoter sequence (vtg1 F: 5‘-

TTTATCTTTCCCATGATGACAGCA-3‘, vtg1 R: 5‘-GGCTGGTGGTTTGTGAAGAAC-

3‘), fragments for the gene construct were amplified and recombination sites (attachment 

sites, attB) (attB3: 5‘- GGGGACAAGTTTGTATAATAAAGTAGGCT-3‘, attB5: 5‘-

ACCCAACTTTTGTATACAAAGTGGTCCCC-3‘) were incorporated to the 5’ ends of the 

fragments by PCR (10 x buffer, 0.198 pM forward and reverse primer, 25 nM dNTP, 4 nM 

MgSO4, 1.00 µg DNA, 1 µL enzyme mix Taq DNA Polymerase (recombinant) (Thermo 

Scintific) in 25 μL final volume), reactions were run in an Applied Biosystems 2720 Thermal 

Cycler (94 oC 2 min; 3x 94 oC 1 min, 55 oC 2 min, 70 oC 9 min; 35x 94 oC 2 min, 56 oC 30 

sec, 70 oC 9 min; 70 oC 5 min). The fragment harboring the putative promoter region 

upstream from the vtg-1 transcription start site was amplified from zebrafish genomic DNA, 

while for the amplification of the fluorescent protein encoding sequence, a pCS2 mCherry 

plasmid (modified Addgene plasmid) was used (mCherry F: 5‘-

GCCGCCACCATGGTGAGCAAGGGCGA-3‘, mCherry R: 5‘-

AGATCTCCGCGAATTAAAAAACCTCCCAC-3‘) and attBs sites were incorporated 

(attB1: 5‘-GGGGACAAGTTTGTACAAAAAAGCAGGCT-3‘, attB2: 5‘-

TACCCAGCTTTCTTGTACAAAGTGGTCCCC-3‘) (2x PCR buffer (containing 25mM 

MgCl2), 0.25 nM dNTP, 0.5 pM forward and reverse primer, 1 μg DNA, 0.3 μL Taq 

polymerase; 97 oC 2 min; 35x 94 oC 20 sec, 60 oC 20 sec, 72 oC 3 min; 25x 94 oC 20 sec, 62 

oC 20 sec, 72 oC 3 min). 

PCR products containing different recombination sites (vtg-1 promoter – attB3, attB5, 

mCherryt – attB1, attB2) were cloned into donor plasmids (pDONR221-P1P2 and 

pDONR221-335) by Gateway recombination (BP reaction, Invitrogen, Thermo Fisher 

Sientific). Sequences were then cloned into the final vector (pSP17.2BSSPE-R3-R5-RFA-

Venus Tol2LR) (Gehrig et al., 2009) harboring Tol2 arms by LR cloning (Invitrogen, Thermo 

Fisher Sientific) (Roure, 2007). Plasmids were transformed and propagated in XL10 GOLD 

Escherichia coli competent cells (Agilent) and were pre-screened by colony PCR with M13 

primers (M13F: TGTAAAACGACGGCCAGT, M13R: CAGGAAACAGCTATGAC) as 

recombination sites in donor plasmids are bonded by M13 primer sites (0.16 pM M13 forward 

and reverse  primer, 2 mM MgCl2, 2 mM dNTP, 1 μL Taq polymerase in 25 μL final volume; 

3x 95 oC 2 min, 45 oC 1 min, 72 oC 3 min; 41x 95 oC 30 sec, 45 oC 30 sec, 72 oC 3 min; 72 oC 

5 min). Incorporation of the sequences was checked in purified plasmids by restriction 

digestion. 
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2.3 Establishment of the Tg(vtg1:mCherry) transgenic line 

For efficient transposition, the construct was linearized. Transposase mRNA was synthetized 

from the encoding pCS2 plasmid by mMACHINE Kit (Ambion, Thermo Fisher Sientific). 

The construct (25 ng) was co-injected with transposase mRNA (25 ng) into the yolk of 

embryos by microinjection. 

Transient expression of the reporter gene was examined in 5 dpf embryos following 100 ng/L 

17-ß-estradiol (E2) treatment under a fluorescent microscope (Leica M205 FA, Leica DFC 

425C camera, LAS V3.8 softer) using RFP filter. 

Untreated embryos injected with the reporter gene construct were raised until fertility and 

crossed to wild-type zebrafish. The gene construct transmitting (so-called P0) founders were 

selected by fluorescent microscopy following 100 ng/L EE2 treatment (5 days of exposure, 

30-70 embryos/treatment) and mCherry specific PCR of estrogen treated offspring (mCherry 

check F: 5’-GGGCGAGATCAAGCAGAGG-3’, mCherry check R: 5'-

CACAACGAGGACTACACCATCG-3', 10x TaqMan buffer, 0.4752 pM forward and reverse 

primer, 2.5 mM dNTP, 2 mM MgCl2, 1 μL Taq polymerase; 95 oC 1 min; 35x 95 oC 15 sec, 

56 oC 20 sec, 72 oC 1 min; 72 oC 3 min). 

Offspring of founders found positive by the PCR were raised and used to establish the F1 

generation of the Tg(vtg1:mCherry) line. F2 was generated by mating 6 selected F1 

individuals (3 males and 3 females) with wild-type fish. F2 were then crossed again with 

wild-type individuals. F4 generation was established by intra- and intergenerational crossing 

of F2 and F3 “transgene carriers”. The above mentioned microscopic examination was carried 

out in every generation while prior to the establishment of F4, PCR-based selection was also 

carried out to generate homozygous individuals. Homozygosity was confirmed by crossing 

these selected fish to wildtype, non-transgenic fish (test cross). Further generations (F5, F6 

and F7) were generated by mating selected individuals of the previous generation inter se. 

2.4 Evaluation of the fluorescent response in heterozygous and homozygous embryos 

Homozygous individuals were crossed inter se and to wild-type fish to generate homozygous 

and heterozygous embryos. Larvae (from 3 dpf) were exposed to 100 g/L E2 in 5 replicates 

containing 20 embryos / replicate, in static conditions. Embryos were examined under the 

microscope at 5 dpf from left lateral view. Number of fluorescent embryos and fluorescent 

signal were determined for both groups and results were compared to each other by the Mann-

Whitney test. 
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2.5 Characterization of mCherry transcription 

For the characterization of mCherry expression 500 F3 embryos were exposed to 200 ng/L 

17-α-ethinyl-estradiol (EE2) from 0 dpf, and studied daily under a fluorescent microscope at 

different magnifications. Exposure solution was changed daily. 

2.6 Testing mCherry inducibility by estrogenic substances 

In F3 and F4 generations, fluorescent protein induction was tested with several concentrations 

of other estrogenic compounds. As it was found that the fluorescent signal was induced from 

2-3 dpf and was strong from 3 dpf the exposure period was changed from 5 days (0 dpf-5 dpf) 

to 2 days (from 3 to 5dpf). The exposure was carried out in three replicates with 20 

embryos/concentrations and solution was changed daily. 

F4 embryos were exposed to E2 (200; 100; 50; 25; 12.5; 6.25; 0.1 μg/L), EE2 (200; 100; 50; 

25; 12.5; 6.25; 3.125 ng/L), zearalenone (ZEA) (500; 250; 100; 50; 10; 5; 1; 0.1 μg/L), 

bisphenol-A (BPA) (20; 10; 8; 6; 5; 2.5; 1; 0.1; 0.01 mg/L), nonylphenol (NP) (300, 150, 75 

μg/L) and atrazine (ATR) (10000; 1000; 100; 50; 25; 25; 12.5; 6.25 μg/L). All agents were 

purchased from Sigma-Aldrich. Treatments were carried out in petri-dishes, at 27.5 °C. The 

effects of solvents used for the stock solutions (ethanol (Reanal) for E2, EE2, ZEA and BPA 

and DMSO (Sigma-Aldrich) for ATR) were tested at the solvent concentration of the highest 

test concentration. 

 

2.7 Imaging and analysis 

Prior to microscopic analysis, embryos were anaesthetized in 0.02% MS-222 (Tricaine-

methane-sulphonate, Sigma-Aldrich) solution, then larvae were oriented (to the left side) in 

0.5% methyl-cellulose. Bright field and fluorescent images were captured from all embryos in 

30x magnification (exposure time: 1s, Leica M205 FA, Leica DFC 425C camera, LAS V3.8 

software). 

Signal in the red range of the RGB (Red, Green, Blue) color range was evaluated by ImageJ 

software (Schneider et al., 2012). An elliptical area of the same size was selected on all 

images and moved to the area of the liver, then the signal strength and the size of the affected 

area was determined. From the two values an integrated value (Integrated density) was 

generated and the level of induction was calculated on the basis of comparison with controls. 

The estrogenicity (so-called relative estrogenic potency) of tested chemicals was determined 

by comparing the EC50 integrated densityof compounds to the EC50 integrated densityof E2. 

ACCEPTED M
ANUSCRIP

T



9 

 

2.8 Testing the mCherry induction in males 

Adult (3-month-old) males from the F1 generation were exposed to 5, 10, 50 and 100 ng/L E2 

for 4 days. Treatments were carried out in two replicates in 3 liter tanks containing 15 

individuals each, in semi-static conditions (water exchange was carried out daily). Induction 

of the fluorescent signal was observed under a fluorescent microscope in vivo (through the 

body). Individuals were anaesthetized in 0.02% MS-222 (Sigma-Aldrich) prior to the 

examination. 

 

2.9 Vitellogenin „whole mount” in situ hybridization 

Expression of the endogenous vtg gene was examined in wild-type and transgenic embryos. 

Wild type embryos (50) and transgenic embryos (20) were exposed to 200 ng/L EE2 from 0 

to 5 dpf. Exposure solution was changed daily. 

In situ hybridization was carried out with a 545 bp probe designed for the vtg mRNA 

according to the protocol developed for zebrafish embryos by Thisse and Thisse (2008). Total 

RNA of estrogen treated embryos was reverse transcribed (Omniscript RT kit, Qiagen) and 

the probe sequence was amplified by PCR (vtg1 pr 6F: 5’-GTACTTGGCACACCATAGCG-

3’, vtg1 pr 6R: 5'-TCAAGGACCTCTGAGATGGC-3') (10x Finnzym buffer (containing 

MgCl2, 0.198 pM forward and reverse primer, 0.5 mM dNTP, 0.12 μL Taq polymerase; 95 oC 

1 min; 40x 95 oC 15 sec, 56 oC 40 sec, 72 oC 4 min; 72 oC 3 min). Purified PCR product was 

ligated to pCRII plasmid (Dual Promoter TA cloning Kit, Invitrogen, Thermo Fisher 

Sientific), plasmids were propagated in TOP10 E. coli competent cells (Thermo Fisher 

Sientific) then colonies were selected by colony PCR. Carrier plasmids were linearized and 

DIG-labelled antisense RNA probe was generated by in vitro transcription (DIG RNA 

Labeling Kit SP6/T7, Roche). 

 

2.10 Testing wastewater samples 

During the summer season, five effluent samples were collected from the activated sludge 

containing phase in a wastewater treatment plant in Gödöllő (Hungary), that uses UTB’s 

Cyclator technology to treat local municipal wastewater (roughly 6500 PE). 

 

2.10.1 Zebrafish wastewater exposure 
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Zebrafish embryos (F7) were exposed from 3 to 5 dpf directly to wastewater samples (100%) 

and dilutions (25; 37.5 and 50%) in three replicates (20 embryo/replicate), in static conditions. 

100 ng/L E2 was used as positive control and system water as negative control. Treatments 

were carried out in petri-dishes, at 27.5 °C. Microscopy and evaluation was carried out as 

above. 

 

2.10.2 Result verification by the yeast estrogen screening assay (BLYES) 

For the BLYES test, wastewater samples were filtered through a membrane filter (0.45 µm). 

Samples were diluted with system water to 25; 37.5 and 50% sample final concentration and applied 

directly in the assays. 

Final growth 1X yeast minimal medium (1X YMM leu-, ura-) was applied for growing 

Saccharomyces cerevisiae BLYES strain (Routledge and Sumpter, 1996; Sanseverino et al., 

2005) at 30 oC and 170 rpm. The overnight culture of BLYES was centrifuged (4000 rpm, 

4°C, 20 min) and the optical density was set with final growth 2X YMM (leu-, ura-) to OD600 

value of 2.0. The measurement was carried out in 3 parallels using a 96-well microplate 

(Greiner Bio-one Gmbh, Germany). The serial dilution of 17-ß-estradiol served as positive 

control. The stock solution was made in system water. Negative controls (final growth 2X 

YMM and yeast cells) and solvent controls (final growth 2X YMM, yeast cells and system 

water) were also applied. 

100 µl diluted wastewater samples were transferred to the wells of the microplate and 100 µl 

of the yeast cells were also added. Bioluminescence was measured after 5 hours of incubation 

at 30oC by VictorX Multilabel Plate Reader (Perkin Elmer Inc.). 

Data analysis involved the determination of the EC50 value of the positive control and the 

bioluminescence intensification values (Froehner et al., 2002) of the positive control and the 

wastewater sample. 

𝐵𝑖𝑜𝑙𝑢𝑚𝑖𝑛𝑒𝑠𝑐𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (%) = −[
(𝐶 − 𝑆)

𝐶
∗ 100] 

where 

C is the mean bioluminescence (cps) value of the negative control 

S is the mean bioluminescence (cps) value of the tested samples. 

Samples were considered to be estrogenic if the bioluminescence intensification value was ≥ 

20%. 
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2.11 Dose-response diagrams, statistical analysis 

For the evaluation of fluorescence by image analysis and integrated density quantification, 

outliers were removed by the ROUT method (Motulsky and Brown 2006) and dose-response 

analysis was carried out following the log transformation and normalization of results. 

Sigmoidal dose-response diagrams were generated by non-linear regression and plotted with 

GraphPad Prism 4.0 (graphpad.com). EC10 and EC90 values were calculated according to the 

recommendations of GraphPad (ECF= (F/100-F)1/H x EC50) (F=effective concentration %, 

H=slope of the dose-response curve). 

3 Results and discussion 

3.1 Establishment of an estrogen sensitive biomarker zebrafish line 

To develop a biomarker transgenic line, a vitellogenin (vtg-1) promoter region - 

anticipated to represent a sensitive promoter for the estrogen-dependent expression of the 

reporter (mCherry) - was selected on the basis of bioinformatical analysis. First, the putative 

transcription start site (TSS) was identified, then the region was examined for potential ERE 

sequences upstream to the TSS. On the 3357 bp promoter region, which is located on 

zebrafish chromosome 22 (positive strand, 24710551-24713908, GRCz10/danRer10, Sept. 

2014, UCSC Genome Browser, previously Zv9/danRer7, July 2010, UCSC Genome 

Browser), 10 potential ERE sites were found with ALGEN PROMO, 5 half ERE sites with 

MATINSPECTOR and one full, previously undescribed sequence (5‘-

CAGGGCAACCTAACCCA -3‘) with DRAGON ERE software. Additionally, based on 

sequences described in the literature (Klinge et al., 1997) 10 half ERE sites were found. The 

fragment carries 26 ERE sequences, while on the 1700 bp promoter sequence of a previously 

developed vtg transgenic zebrafish line (ere:zvtg1-gfp) (Chen et al., 2010), only 12 ERE 

sequences can be identified. These regions overlap, so the vtg1-mCherry construct harbors 17, 

while the ere-zvtg1:gfp line carries 8 ERE regions altogether (Figure 1). The full, previously 

undescribed ERE sequence identified on the vtg1 promoter sequence in the vtg1-mCherry 

transgene construct is part of the ere:zvtg1-gfp construct. The Tg(vtg1:mCherry) transgene 

construct was anticipated to mimic the expression of the native vtg gene, as it carries the 

longest natural promoter region used among vtg transgenic laboratory model fish lines and 

lacks artificial ERE sequences. 

To test the expression of the construct (vtg1:mCherry), transient expression was analyzed in 

embryos following five days of exposure to 17-ß-estradiol under a fluorescent microscope. 
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The fluorescent signal appeared in 20% of embryos injected with the transgene construct. In 

addition to the fluorescence in the liver (Figure 2), the majority of embryos expressed strong 

transient fluorescent signal in the yolk, while in some embryos (<1%) weak expression was 

observed in the eye and kidney. Thus the functionality of the vtg1::mCherry construct was 

proven. Founders of the construct were identified and used for generation of a stable 

transgenic line. 

In F1 embryos, fluorescent protein expression disappeared from the kidney and eye region, 

while it was still detected in the yolk in response to estrogen, suggesting that the signal is a 

result of transgene activity. Estrogen inducible fluorescent signal still appeared in the yolk of 

embryos in all subsequent generations, with a percentage of 5-100%. From F3, 3 distinct lines 

were generated from the offspring of 3 founder pairs. Although fluorescence in the yolk was 

relatively strong in case of one line, its offspring proved to be highly sensitive to estrogens. The 

other two lines showed no unspecific fluorescent activity. Fish were maintained as heterozygotes 

for the transgene until F3. In F3 and F4, homozygous individuals were generated by crossing 

siblings and verified by test crosses with non-transgenic wild type fish. From F4 the line has been 

maintained in homozygous form. 

3.2 Comparison of the fluorescent signal in homozygous and heterozygous embryos of the 

(Tg(vtg1:mCherry)) line 

It was supposed that fluorescent signal intensity in homozygous and heterozygous 

embryos are different, as homozygous individuals carry two transgene alleles. So 

homozygous and heterozygous larvae were compared on the basis of response to 100 g/L 

E2. Significant difference was found in the number of fluorescent fish (P=0.0079), and also in 

integrated density (P=0,0110) (Figure 3), therefore from F3, only homozygous embryos were 

used in the experiments. 

3.3 Pretesting the concentration dependency of the fluorescent signal in (Tg(vtg1:mCherry) 

F3 embryos 

Concentration dependency of the fluorescent signal was first examined in F3 embryos 

following exposures to estrogenic substances from 3 to 5 dpf. Due to inhomogeneity, results 

showed a large variation. Exposures were carried out with E2, EE2 and ZEA, but significant 

signal intensity differences were only observed in case of EE2 (results not shown). There was no 

fluorescent signal in the solvent control in either case. All of the three lines proved to be suitable 

for the detection of estrogenicity, however subsequent experiments were performed on the line 

showing the highest level of induction. 

ACCEPTED M
ANUSCRIP

T



13 

 

3.4 Adult male (Tg(vtg1:mCherry)) exposure to 17-β-estradiol 

Vtg is normally expressed in a high level in mature females, while in males the level is 

very low (Wallace and Jared, 1968; Lazier and McKay, 1993; Tyler et al., 1996, 1999a, b; 

Baumann et al., 2013). As in embryos, vitellogenin production in males can be triggered by 

exposure to estrogens too, and the effect exhibits concentration-dependency. In the liver of 

untreated females mCherry fluorescence can already be observed through the pigmented skin, 

while in males the fluorescent signal is undetectable (Figure 4) even after autopsy. 

Inducibility of the transgene was demonstrated by E2 treatment of mature males. The 

reporter gene appeared to show a concentration-dependent response. Tg(vtg1:mCherry) males 

could detect E2 from 5 ng/L (Figure 5), that is lower than the E2 concentration detectable by  

the ere:zvtg1-gfp line (Chen et al., 2010). Moreover, fluorescence appeared at an earlier time 

point (at the second day of exposure) at higher concentrations (100 ng/L). Further 

concentrations were not tested on adults and hence, no EC50 concentrations were determined 

for adult fish. By the end of the exposure period, fluorescent activity was detectable in the 

liver of all treated individuals. Tg(vtg1:mCherry) is likely to detect lower concentrations too 

in longer exposure periods, as the ere:zvtg1-gfp line (Chen et al., 2010) gave a response to the 

lowest concentration only after 7 days of exposure. 

It seems that mature vtg1:mCherry males are probably more sensitive to E2 than 

embryos. On the basis of literature, estrogen sensitivity of zebrafish is gradually increasing 

with the development of gonads, and the pattern of receptor paralogs and their expression also 

changes. In the liver of embryos, only the ß2 receptor is present. The liver of adult males 

express all three estrogen receptors (α, ß1, ß2) (Bardet et al., 2002) which could impact on the 

sensitivity and compound specificity if compared to embryos. 

3.5 Examination of the expression of the fluorescent signal at different developmental 

stages 

To establish an appropriate test protocol for the Tg(vtg1:mCherry) line, mCherry 

transcription was characterized in F3 homozygous embryos exposed to 17-α-ethinyl-estradiol 

(EE2). 

Initially embryo exposures were carried out from 0 to 5 dpf. However liver 

development in zebrafish starts at 6 hpf, and the functional organ is formed at 50 hpf (Tao and 

Peng, 2009), results proved that vitellogenin production begins in later stages. The fluorescent 

signal was induced from 2-3 dpf and was strong from 3 dpf. The size of the fluorescent area 

increased gradually along with liver development and reached the maximum at 5 dpf in the 
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experimental period (Figure 6). This is in accordance with previous findings that the liver of 

the zebrafish embryo is able to produce vtg from 2-3 dpf (Chen et al., 2010). Therefore, the 

exposure period was changed from 5 days (0 dpf-5 dpf) to 2 days (from 3 to 5dpf) in further 

experiments. 

 

3.6 Characterisation of endogenous vitellogenin expression in wild-type and transgenic 

embryos by Vtg in situ hybridisation 

Regardless of the test compound or concentration, the reporter activity in the liver of 

embryos varied in all generations and lines exposed. The size of the expression area and 

strength of the fluorescent signal showed no correlation (data not shown). Therefore 

endogenous vitellogenin expression was characterized in wild-type and transgenic embryos to 

show if variability is also found for the native vtg expression. 

Vitellogenin RNA in situ hybridization showed that in case of both wild-type and 

transgenic embryos the gene was not induced in all individuals, and embryos expressing vtg 

exhibit variability in the area of expression (Figure 7). 

In situ hybridization images of transgenic embryos were compared to fluorescent 

images captured before fixation. Results clearly showed that the differences in endogenous 

vtg production overlap with the differences detected in mCherry expression (Figure 8). 

Interestingly, although 5 dpf zebrafish embryos have developed both liver lobes (Tao 

and Peng, 2009; Chu and Sadler, 2009), the production of vtg at this stage was consistently 

observed only in the left lobe for both endogenous vtg and transgene, further confirming that 

the transgene is regulated similar to the endogenous vtg gene (Figure 9). 

The number of fluorescent embryos was found to be substance and dose dependent in 

the ere:zvtg1-gfp (Chen et al., 2010) and the 3pERE-TATA-Gal4ff (Lee et al., 2012) transgenic 

zebrafish lines too. This experiment showed that variability in the mCherry signal is 

associated with variability of the native vtg expression, which accounts for high biological 

variability. On the basis of these a minimum of 20 embryos per concentration in replicated 

experiments should be exposed to demonstrate concentration-dependent expression of the 

transgene. The source of variability is not known but could e.g. be associated with individual 

differences of concentrations at the target site or genetic factors and may be reduced by 

establishing inbred strains. 
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3.7 Sensitivity of the Tg(vtg1:mCherry) transgenic line to estrogenic substances 

To test the sensitivity of Tg(vtg1:mCherry), dose-response was studied with E2, EE2, 

ZEA, BPA, NP and ATR. Concentration dependent fluorescent response was detected in case 

of E2, EE2, ZEA and BPA (Figure 10). The lowest effective concentration (LOEC) of 

mCherry expression was 0.1 mg/L for E2, 6.25 ng/L for EE2, 0.1 µg/L for ZEA and 1.25 

mg/L for BPA. LC values and estrogen equivalents are shown in Figure 11. In case of NP the 

fluorescent protein was expressed only in a few embryos, in a very small area of the liver. 

ATR in this developmental stage had no effect on vtg levels and there was no fluorescent 

signal in the solvent control in either case. 

It is not easy to compare the sensitivity of the Tg(vtg1:mCherry) line to other estrogen 

detecting transgenic lines, as the exposure protocols and evaluation processes are different. 

Based on published data, the detectable estrogenic substance concentrations by 

Tg(vtg1:mCherry) embryos are similar to that of zvtg1-gfp (Chen et al., 2010), except for 

ZEA, however in the latter case exposure was carried out from 7 to 20 dpf, when the number 

of estrogen receptors is higher than at 5 dpf. EC50 levels calculated from dose-response curves 

of the aromatase biosensor line (Brion et al., 2012) are lower than the EC50 values of the new 

transgenic line. The difference in EC values is probably due to the different sensitivity of the 

genes and the different number and type of estrogen receptors expressed in the two organs. 

NP triggered response only in a few embryos of the Tg(vtg1:mCherry) line, and the 

expression was restricted to a very small area of the liver. The zvtg1-gfp (Chen et al., 2010) 

line did not respond to NP, while the aromatase transgenic line (Brion et al., 2012) could 

detect the estrogenicity of a mixture of 4-nonyl-phenols with an EC50 of 406 nM. 

On the basis of EC50 values of fluorescent protein induction, BPA proved to be approx. 

3000x weaker, ZEA was nearly equivalent, while EE2 was an approx. 273x stronger 

estrogenic substance compared to natural estrogen (Figure 11). On the basis of literature EE2 

seems to be about 16.48x more estrogenic than E2 (Rose et al., 2002). The most striking result 

was the almost similar estrogenicity of E2 and ZEA. According to data described so far the 

estrogenic effect of ZEA compared to E2 varies in a very large range, and is 5.4-1439x 

weaker than E2 (Schwartz et al., 2010; Arukwe et al., 1999; Le Guevel and Packdel, 2001; 

Olsen et al., 2005; Tollefsen et al., 2003). Variance might be due to different model systems 

and methods, however none have shown similar estrogenicity of these agents. Presumably 

embryos may have weaker biotransformation of the parent compound, or ZEA is diffusing 
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easily in the embryo, keeping internal concentrations of the parent compound higher than in 

an adult animal. 

 

3.8 Testing estrogenicity of wastewater samples in Tg(vtg1:mCherry) embryos 

 

To test if embryos are suitable for screening environmental estrogenicity, F7 

Tg(vtg1:mCherry) embryos were exposed to undiluted and diluted effluent samples that were 

taken from the activated sludge containing phase. Embryos showed no fluorescent signal in 

four (WW1, WW2, WW3 and WW5) wastewater samples, while in the case of WW4, 

fluorescence was detected in the liver even at the lowest dilution (25%) (Figure 12A). The 

intensity of the signal increased gradually with concentration. The raw, undiluted sample was 

probably too concentrated for the fish and caused significant lethality and weaker 

fluorescence. These results were confirmed by BLYES test. According to the concentration-

response curve of the positive control 17-ß-estradiol (data not shown), the EC50 value was 

1.79 nM. This concentration caused 632% bioluminescence intensification in the BLYES test. 

Similarly as observed for embryos the other four wastewater effluents (WW1, WW2, 

WW3 and WW5) did not induce bioluminescence (Figure 12B). This indicates that the 

Tg(vtg1:mCherry) line is suitable for testing wastewater and environmental samples. 

 

4  

5 Conclusions 

In the present study we have established and characterized a transgenic zebrafish line 

(Tg(vtg1:mCherry)) that - in the presence of estrogenic substances - produces red fluorescent 

protein in the liver. The sensitivity was tested with different estrogenic substances in the fourth 

generation. According to liver development and the first appearance of the fluorescent signal 

during development, the exposure period was shortened from 5 to 2 days (3 to 5 dpf). 

Fluorescence in embryos could be detected upon treatment with 17-ß-estradiol from a 

concentration of 100 ng/L, 17-α-ethynilestradiol from 1 ng/L, zearalenone from 100 ng/L and 

bisphenol-A from 1 mg/L respectively. Transgene activity appeared to be more sensitive to 

treatment (E2) in the adult stage, with detectable transgene activity from 5 ng/L concentration. 

ACCEPTED M
ANUSCRIP

T



17 

 

The Tg(vtg1:mCherry) transgenic line could detect estrogenicity in wastewater samples  

following direct exposure with the same sensitivity as the commonly used yeast estrogen test, 

BLYES. 

Results suggest that sensitivity of the Tg(vtg1:mCherry) line is in the range of 

environmentally relevant concentrations (detected in waters or effluents), and could detect 

estrogenicity in wastewater. On the basis of these, Tg(vtg1:mCherry) with the developed test 

protocol could be a sufficient tool in assessing environmental estrogenicity in the future. In 

addition to environmental toxicology tests this transgenic line may help in determining the 

onset of estrogen synthesis during sexual development and in investigating the molecular 

background of estrogenic effects and vitellogenin induction by morpholino injection or gene 

knockout. Females could also be subjects of examining androgens where the effect could be 

evaluated on the basis of the decrease in the strength of the fluorescent signal. Moreover, 

adverse effects of toxic substances on the liver may also be studied in vivo. 
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Figure legends: 

 

 

Figure 1. Half and full estrogen responsive elements on the 1700 bp fragment of the 

vitellogenin-1 promoter of the ere:zvtg1-gfp line (Chen et al., 2010) (A) and on the 3357 bp 

vitellogenin-1 promoter fragment of the Tg(vtg1:mCherry) line (B). Sites were identified on 

the basis of literature and by specific softwares (rectangles (sequences described in literature): 

TGACC (203-207, 1245-1249), CAGCTG (519-524, 1692-1697, 2601-2606), GGTCA 

(1512-1516, 2448-2452, 3290-3294), CAGTCA (2553-2558), TGACT (2563-2567), triangles 

(ALGEN PROMO): TGACCTTAA (202-210), TGACCTTAAA (202-211), TTGACCAG 

(201-208), TTGACCAG (1243-1251), TGACCAGAT (1244-1252), GCACGGTCA (1507- 

1515), ACGGTCAA (1509-1516), CAAGGGTCA (2443- 2451), AGGGTCAG (2445-2452), 

ACTTGGTCA (3285-3293), TTGGTCAG (3287-3294), circles (MATINSPECTOR):, 

TCCAGAGGTTAGGTTAACCTGGC (165-187), ATGACAGGCCAGGTTAACCTAAC 

(172-194), GGGGCAGGGCAACCTAACCCAAA (2163-2185), 

ATTAAGGGGCAGGGCAACCTAAC (2168-2190), TATACAGGTTAAAGTGACATTTA 

(3273-3295), star (DRAGON ERE FINDER): CAGGGCAACCTAACCCA (1240-1257). The 

only full, newly identified ERE sequence is highlighted with a circle. The putative 

transcription start site (TSS) is indicated by an arrow. 
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Figure 2. Red fluorescent signal in the liver of injected 5 dpf embryos, following E2 induction 

(right). In non-treated controls (left) no signal was detected. Liver is indicated by arrows. (BF: 

bright field, mCherry: red fluorescent filter view, single plain images)  
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Figure 3. Fluorescence in homozygous and heterozygous embryos were compared under the 

microscope following exposure to 100 g/L E2 from 3 to 5 dpf. Significant difference was 

detected both in the number of fluorescent fish (A) (P=0.0079, Mann-Whitney test) and the 

integrated density value (B) (P=0.0110, Mann-Whitney test) based on the intensity and spatial 

distribution of the fluorescent signal. ACCEPTED M
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Figure 4. Fluorescence in untreated adult vtg1:mCherry transgenic males (9 months old) is 

undetectable while strong fluorescence of the liver in untreated females is visible even 

through the pigmented skin (BF: bright field, mCherry: red fluorescent filter view, single 

plain images). 

 

Figure 5. Fluorescent signal in a 9-month-old, untreated control male and 9-month-old 17-ß-

estradiol treated males (E2: 17-ß-estradiol, BF: bright field, mCherry: red fluorescent filter 

view, single plain images, fluorescent signal is shown by arrows) 
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Figure 6. Fluorescent signal in developing transgenic embryos (vtg1-mCherry) exposed to 

EE2 (200 ng/L). Expression was detected in the liver (indicated by arrows) 3 dpf. (BF: bright 

field, mCherry: red fluorescent filter view, single plain images) Scale bar: 1mm. 
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Figure 7. Whole mount in situ hybridization of 5 dpf, 17--ethynil-estradiol treated (200 ng/L 

EE2), wild-type embryos shown individual differences in vtg-1 expression (liver is indicated 

by arrows on single plain images) 
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Figure 8. Similar biological variability of vtg and transgene response was clearly shown by 

comparing in situ hybridization images of 5 dpf transgenic embryos (vtg1:mCherry) to 

fluorescent images captured before fixation. Endogenous vtg production functioned similarly 

to the fluorescent protein, regarding spatial distribution and strength of the signal. Embryos 

were treated with 200 ng/L EE2. (vtg-1 WISH: vitellogenin-1 whole mount in situ 

hybridization, mCherry: red fluorescent filter view, single plain images, liver indicated by 

arrows)). 
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Figure 9. Expression of vtg-1 was restricted to the left liver lobe (in 5 dpf wild-type larvae 

following 200 ng/L EE2 treatment) (dorsal (A) and left lateral (B) view, liver is indicated by 

arrows on single plain images). 
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Figure 10. Dose-response diagrams for exposures to 17-ß-estradiol (E2), 17-α-ethynil-

estradiol (EE2), bisphenol-A (BPA) and zearalenone (ZEA) in 5 dpf vtg1-mCherry larvae. 

Results are expressed as integrated density generated from signal strength and the size of the 

affected area (±SEM, n=.60) (A). Fluorescent images (mCherry) of the liver of E2 exposed 

larvae. Signal intensity increased gradually with concentration. (B) 100% refers to the 

observed maximum for each compound. 
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Figure 11. EC50, EC10 and EC90 values and estrogenic potencies relative to 17-ß-estradiol for 

estrogenic substances based on the results of the vtg1-mCherry transgenic line (17-ß-estradiol 

(E2), 17-α-ethynil-estradiol (EE2), zearalenone (ZEA) and bisphenol-A (BPA)) 
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Fig. 12. Dose-response curves for wastewater (sample WW4) exposure in 5 dpf vtg1-mCherry 

larvae (A) and the BLYES test (B). Results are expressed as integrated density generated from 

signal strength and the size of the affected area (±SEM, n=.60) in case of zebrafish. On figure 

B, Y-axis indicates fold change bioluminescent intensification compared to the 

bioluminescence of the negative control. Undiluted samples could not be tested in the BLYES 

system. 
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