2,261 research outputs found

    Theory of severe slowdown in the relaxation of rings and clusters with antiferromagnetic interactions

    Get PDF
    We show that in the severe slowing down temperature regime the relaxation of antiferromagnetic rings and similar magnetic nanoclusters is governed by the quasi-continuum portion of their quadrupolar fluctuation spectrum and not by the lowest excitation lines. This is at the heart of the intriguing near-universal power-law temperature dependence of the electronic correlation frequency ωc\omega_c with an exponent close to 4. The onset of this behavior is defined by an energy scale which is fixed by the lowest spin gap Δ0\Delta_0. This explains why experimental curves of ωc\omega_c for different cluster sizes and spins nearly coincide when TT is rescaled by Δ0\Delta_0.Comment: new slightly extended version (6 pages, 1 fig. added

    Non-ergodic dynamics of the extended anisotropic Heisenberg chain

    Full text link
    The issue of ergodicity is often underestimated. The presence of zero-frequency excitations in bosonic Green's functions determine the appearance of zero-frequency momentum-dependent quantities in correlation functions. The implicit dependence of matrix elements make such quantities also relevant in the computation of susceptibilities. Consequently, the correct determination of these quantities is of great relevance and the well-established practice of fixing them by assuming the ergodicity of the dynamics is quite questionable as it is not justifiable a priori by no means. In this manuscript, we have investigated the ergodicity of the dynamics of the zz-component of the spin in the 1D Heisenberg model with anisotropic nearest-neighbor and isotropic next-nearest-neighbor interactions. We have obtained the zero-temperature phase diagram in the thermodynamic limit by extrapolating Exact and Lanczos diagonalization results computed on chains with sizes L=6÷26L = 6 \div 26. Two distinct non-ergodic regions have been found: one for J′/Jz≲0.3J^\prime/J_z \lesssim 0.3 and ∣J⊥∣/Jz<1|J_\perp|/J_z < 1 and another for J′/Jz≲0.25J^\prime/J_z \lesssim 0.25 and ∣J⊥∣/Jz=1|J_\perp|/J_z = 1. On the contrary, finite-size scaling of T≠0T \neq 0 results, obtained by means of Exact diagonalization on chains with sizes L=4÷18L = 4 \div 18, indicates an ergodic behavior of dynamics in the whole range of parameters.Comment: 6 pages, 7 figure

    Deficit of temporal dynamics of detection of a moving object during egomotion in a stroke patient: a psychophysical and MEG study

    Full text link
    To investigate the temporal dynamics underlying object motion detection during egomotion, we used psychophysics and MEG with a motion discrimination task. The display contained nine spheres moving for 1 second, eight moved consistent with forward observer translation, and one (the target) with independent motion within the scene (approaching or receding). Observers's task was to detect the target. Seven healthy subjects (7HS) and patient PF with an infarct involving the left occipital-temporal cortex participated in both the psychophysical and MEG study. Psychophysical results showed that PF was severely impaired on this task. He was also impaired on the discrimination of radial motion (with even poorer performance on contraction) and 2D direction as well as on detecting motion discontinuity. We used anatomically constrained MEG and dynamic Granger causality to investigate the direction and dynamics of connectivity between the functional areas involved in the object-motion task and compared the results of 7HS and PF. The dynamics of the causal connections among the motion responsive cortical areas (MT, STS, IPS) during the first 200 ms of the stimulus was similar in all subjects. However, in the later part of the stimulus (>200 ms) PF did not show significant causal connections among these areas. Also the 7HS had a strong, probably attention modulatory connection, between MPFC and MT, which was completely absent in PF. In PF and the 7HS, analysis of onset latencies revealed two stages of activations: early after motion onset (200–400 ms) bilateral activations in MT, IPS, and STS, followed (>500 ms) by activity in the postcentral sulcus and middle prefrontal cortex (MPFC). We suggest that the interaction of these early and late onset areas is critical to object motion detection during self-motion, and disrupted connections among late onset areas may have contributed to the perceptual deficits of patient PF.Published versio

    Online assessment of negotiation skills through 3D role play simulation

    Get PDF
    The lack of standardised technological tools to assess psychological characteristics allows traditional tests to be still widely used, though these tests require double processing and expensive procedures. ENACT is both a serious game for a standardised assessment of the user negotiation skills and an Intelligent Tutoring System, which makes use of the data collected during the interaction in order to generate a tailored environment for the user to experience and improve their skills and be guided through learning

    New perspectives in ecosystem services science as instruments to understand environmental securities

    Get PDF
    As societal demand for food, water and other life-sustaining resources grows, the science of ecosystem services (ES) is seen as a promising tool to improve our understanding, and ultimately the management, of increasingly uncertain supplies of critical goods provided or supported by natural ecosystems. This promise, however, is tempered by a relatively primitive understanding of the complex systems supporting ES, which as a result are often quantified as static resources rather than as the dynamic expression of human-natural systems. This article attempts to pinpoint the minimum level of detail that ES science needs to achieve in order to usefully inform the debate on environmental securities, and discusses both the state of the art and recent methodological developments in ES in this light. We briefly review the field of ES accounting methods and list some desiderata that we deem necessary, reachable and relevant to address environmental securities through an improved science of ES. We then discuss a methodological innovation that, while only addressing these needs partially, can improve our understanding of ES dynamics in data-scarce situations. The methodology is illustrated and discussed through an application related to water security in the semi-arid landscape of the Great Ruaha river of Tanzania. © 2014 The Author(s) Published by the Royal Society. All rights reserved

    Mesoscopic continuous and discrete channels for quantum information transfer

    Full text link
    We study the possibility of realizing perfect quantum state transfer in mesoscopic devices. We discuss the case of the Fano-Anderson model extended to two impurities. For a channel with an infinite number of degrees of freedom, we obtain coherent behavior in the case of strong coupling or in weak coupling off-resonance. For a finite number of degrees of freedom, coherent behavior is associated to weak coupling and resonance conditions

    Metal abundances in extremely distant Galactic old open clusters. II. Berkeley 22 and Berkeley 66

    Full text link
    We report on high resolution spectroscopy of four giant stars in the Galactic old open clusters Berkeley~22 and Berkeley~66 obtained with HIRES at the Keck telescope. We find that [Fe/H]=−0.32±0.19[Fe/H]=-0.32\pm0.19 and [Fe/H]=−0.48±0.24[Fe/H]=-0.48\pm0.24 for Berkeley~22 and Berkeley~66, respectively. Based on these data, we first revise the fundamental parameters of the clusters, and then discuss them in the context of the Galactic disk radial abundance gradient. We found that both clusters nicely obey the most updated estimate of the slope of the gradient from \citet{fri02} and are genuine Galactic disk objects.Comment: 20 pages, 6 eps figures, accepted for publication in the Astronomical Journa

    Double dot chain as a macroscopic quantum bit

    Full text link
    We consider an array of N quantum dot pairs interacting via Coulomb interaction between adjacent dots and hopping inside each pair. We show that at the first order in the ratio of hopping and interaction amplitudes, the array maps in an effective two level system with energy separation becoming exponentially small in the macroscopic (large N) limit. Decoherence at zero temperature is studied in the limit of weak coupling with phonons. In this case the macroscopic limit is robust with respect to decoherence. Some possible applications in quantum information processing are discussed.Comment: Phys. Rev. A (in press
    • …
    corecore