375 research outputs found

    Linking Microbial Heterotrophic Activity and Sediment Lithology in Oxic, Oligotrophic Sub-Seafloor Sediments of the North Atlantic Ocean

    Get PDF
    Microbial heterotrophic activity was investigated in oxic sub-seafloor sediments at North Pond, a sediment pond situated at 23°N on the western flank of the Mid-Atlantic Ridge. The North Pond sediments underlie the oligotrophic North Atlantic Gyre at 4580-m water depth and cover a 7–8 million-year-old basaltic crust aquifer through which seawater flows. Discrete samples for experimentation were obtained from up to ~9 m-long gravity cores taken at 14 stations in the North Pond area. Potential respiration rates were determined in sediment slurries incubated under aerobic conditions with 14C-acetate. Microbial heterotrophic activity, as defined by oxidation of acetate to CO2 (with O2 as electron acceptor), was detected in all 14 stations and all depths sampled. Potential respiration rates were generally low (<0.2 nmol of respired acetate cm−3 d−1) in the sediment, but indicate that microbial heterotrophic activity occurs in deep-sea, oxic, sub-seafloor sediments. Furthermore, discernable differences in activity existed between sites and within given depth profiles. At seven stations, activity was increased by several orders of magnitude at depth (up to ~12 nmol of acetate respired cm−3 d−1). We attempted to correlate the measures of activity with high-resolution color and element stratigraphy. Increased activities at certain depths may be correlated to variations in the sediment geology, i.e., to the presence of dark clay-rich layers, of sandy layers, or within clay-rich horizons presumably overlying basalts. This would suggest that the distribution of microbial heterotrophic activity in deeply buried sediments may be linked to specific lithologies. Nevertheless, high-resolution microbial examination at the level currently enjoyed by sedimentologists will be required to fully explore this link

    Chlorin Index: A new parameter for organic matter freshness in sediments

    Get PDF
    Total chlorins, comprising degradation products of chlorophyll, have been used recently to reconstruct paleoproductivity from marine sediment cores. Here, we report on a new index, the Chlorin Index (CI), that proves to be a helpful tool for rapidly estimating organic matter freshness in marine sediments. The CI is a ratio between the fluorescence intensity of a sediment extracted with acetone and treated with hydrochloric acid and the original sediment extract. It represents the ratio of chlorophyll and its degradation products deposited in the sediments that could still be chemically transformed and those that are inert to chemical attack. The ratio is lower in sediments that include freshly deposited phytoplankton material and higher in older, more degraded sediments. We measured this new parameter on surface sediments, and sediments from several short and a long sediment core from different oceanic settings. CI values range from 0.2 for chlorophyll a to 0.36–0.56 for fresh material deposited on the shelf off Namibia to values around 0.67 in sediments off Chile and Peru to values up to 0.97 for sediments in a deep core from the northeastern slope of the Arabian Sea. We have compared the CI to rates of bacterial sulfate reduction, as a direct measure of organic matter reactivity and to other degradation indices based on amino acid composition. We conclude that the CI is a reliable and simple tool for the characterization of organic material freshness in sediments in respect to its degradation state

    Sulfate reduction in surface sediments of the southeast Atlantic continental margin between 15 degrees 38'S and 27 degrees 57'S (Angola and Namibia)

    Get PDF
    Sulfate reduction rates in the surface sediments from 17 stations from an along-slope transect (1,300 m) and from a cross-slope transect (855-4,766 m) were determined in the continental margin sediments of the Benguela Upwelling system. Profiles at all sites in the upwelling area showed increasing sulfate reduction rates from near zero at the surface to a peak at 2-5 cm (up to 29 nmol cm(-3) d(-1)) and then decreasing exponentially with depth to near background rates at 10-20 cm depth (<2 nmol cm(-3) d(-1)). Depth-integrated sulfate reduction rates were greatest at 1,300 m and decreased exponentially with water depth. Along the transect following the 1,300-m isobath, depth-integrated sulfate reduction rates were highest in the north Cape Basin (1.16 +/- 0.23 mmol m(-2) d(-1)), decreased over the Walvis Ridge (0.67 +/- 0.02 mmol m(-2) d(-1)), and were lowest in the south Angola Basin (0.31 +/- 0.23 mmol m(-2) d(-1)). Depth-integrated sulfate reduction rates were consistent with the known pattern of coastal upwelling intensities and were also strongly correlated with surface organic carbon concentrations. Sulfate reduction rates, both as a function of depth and in comparison with sediment trap data, indicated that lateral downslope transport of organic carbon occurs. Sulfate reduction was estimated to account for 20-90% of the published rates of total oxygen consumption for the sediments at 1,300 m depth and 3-16% of sediments from 2,000 to 3,000 m depth. Comparison of the sulfate reduction rate profiles with the published diffusive oxygen uptake rates showed that the kinetics of oxygen utilization in the surface sediments are much faster than those for anaerobic organic carbon remineralization, although the underlying cause of the difference was not clear

    IODP Expedition 307 Drills Cold-Water Coral Mound Along the Irish Continental Margin

    Get PDF

    Determination of dissimilatory sulfate reduction rates in marine sediment via radioactive S-35 tracer

    Get PDF
    Rates of dissimilatory sulfate reduction in aquatic sediments have been measured over many years with S-35-radiotracer, and the method has been continuously modified and optimized. This article discusses the sequence of procedures that constitutes the method from sediment handling before incubation, via incubation and distillation, to statistical analysis of the results. We test modifications that have been added since previous method descriptions, and we recommend sound experimental procedures. We discuss the measurement of extremely low sulfate reduction rates whereby only one count per minute labeled sulfide may be produced. We show by numerical modeling that the measured rates are mostly representative for a small volume around the point where (SO42-)-S-35 is injected and that this can be used as an advantage to avoid edge effects. Finally, we show that oxidation will spoil samples during storage unless the samples are stored frozen. The main focus is on marine sediment, but the discussions are equally relevant for freshwater

    Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations

    Get PDF
    Deep subseafloor sediments host a microbial biosphere with unknown impact on global biogeochemical cycles. This study tests previous evidence based on microbial intact polar lipids (IPLs) as proxies of live biomass, suggesting that Archaea dominate the marine sedimentary biosphere: We devised a sensitive radiotracer assay to measure the decay rate of ([C-14]glucosyl)-diphytanylglyceroldiether (GlcDGD) as an analog of archaeal IPLs in continental margin sediments. The degradation kinetics were incorporated in model simulations that constrained the fossil fraction of subseafloor IPLs and rates of archaeal turnover. Simulating the top 1 km in a generic continental margin sediment column, we estimated degradation rate constants of GlcDGD being one to two orders of magnitude lower than those of bacterial IPLs, with half-lives of GlcDGD increasing with depth to 310 ky. Given estimated microbial community turnover times of 1.6-73 ky in sediments deeper than 1 m, 50-96% of archaeal IPLs represent fossil signals. Consequently, previous lipid-based estimates of global subseafloor biomass probably are too high, and the widely observed dominance of archaeal IPLs does not rule out a deep biosphere dominated by Bacteria. Reverse modeling of existing concentration profiles suggest that archaeal IPL synthesis rates decline from around 1,000 pg.mL(-1) sediment.y(-1) at the surface to 0.2 pg.mL(-1).y(-1) at 1 km depth, equivalent to production of 7 x 10(5) to 140 archaeal cells.mL(-1) sediment.y(-1), respectively. These constraints on microbial growth are an important step toward understanding the relationship between the deep biosphere and the carbon cycle

    Biogeochemistry of Norwegian cold-water coral reef sediments

    Get PDF
    Cold-water coral ecosystems may constitute a geologically significant fraction (>1%) of global carbonate production (Lindberg and Mienert, 2005). Thriving cold-water coral reefs are also considered to be hot-spots of diversity and biomass production. Nevertheless, the impacts of these ecosystems on the adjacent sediment and associated geochemical processes including carbonate preservation are poorly understood.Here we present the first data quantifying the biogeochemical processes in modern (post-glacial) cold-water coral reef sediments. This work integrates organoclastic sulfate reduction rates, multi-element pore-water profiles and solid-phase analyses of gravity cores (8 sites at two reefs) retrieved during R/V Polarstern expedition ARKXXII/1a to the mid-Norwegian cold-water coral reefs in June 2007.The reef sediments are comprised of coral fragments embedded in loose silt or clay and biogenic debris (of 0,5 to 3,2 m thickness). The base of the coral-bearing reef sediments consists of highly compacted glacial clays. High carbonate contents (up to 75 %) and low organic carbon contents (~0,5 %) characterize the reef sediments. Porewater Ca2+, Mg2+ and Sr2+ profiles indicate that on-going carbonate precipitation dominates any carbonate dissolution. Overall microbial activity in these sediments is low; measured sulfate reduction rates are less than 1 nmol S cm-3 d-1. Pore-water analyses reveal elevated Fe2+ and Mn2+ concentrations suggesting that Fe and Mn reduction occurs. This may be the result of sulfide reacting with the available reactive iron pool to form Fe-sulfides indicated by the absence of sulfide in the pore water. Fe and Mn reduction may also be attributed to dissimilatory microbial metal reduction. Iron reduction linked to microbial sulfate reduction may enhance diagenetic carbonate precipitation and coral preservation in these sediments as suggested for the older coldwater coral mound systems drilled in IODP Expedition 307 (Ferdelman et al., 2006). Extremely low methane concentrations (<0,5 µM) were found at all depths and sites along the Norwegian margin. This argues against a linkage between coral reef distribution and the appearance of hydrocarbon seepage as formulated by Hovland et al. (1998)

    Oxygen isotope composition of dissolved sulphate in deep-sea sediments: Eastern Equatorial Pacific Ocean

    Get PDF
    High-resolution analyses of the oxygen isotope ratio (18O/16O) of dissolved sulfate in pore waters have been made to depths of >400 meters below seafloor (mbsf) at open-ocean and upwelling sites in the eastern equatorial Pacific Ocean. 18O values of dissolved sulfate (18O-SO4) at the organic-poor open-ocean Site 1231 gave compositions close to modern seawater (+9.5 vs. Vienna-standard mean ocean water, providing no chemical or isotopic evidence for microbial sulfate reduction (MSR). In contrast, the maximum 18O values at Sites 1225 and 1226, which contain higher organic matter contents, are +20 and +28, respectively. Depth-correlative trends of increasing 18O-SO4, alkalinity, and ammonium and the presence of sulfide indicate significant oxidation of sedimentary organic matter by sulfate-reducing microbial populations at these sites. Although sulfate concentration profiles at Sites 1225 and 1231 both show similarly flat trends without significant net MSR, 18O-SO4 values at Site 1225 reveal the presence of significant microbial sulfur-cycling activity, which contrasts to Site 1231. This activity may include contributions from several processes, including enzyme-catalyzed equilibration between oxygen in sulfate and water superimposed upon bacterial sulfate reduction, which would tend to shift 18O-SO4 toward higher values than MSR alone, and sulfide oxidation, possibly coupled to reduction of Fe and Mn oxides and/or bacterial disproportionation of sulfur intermediates. Large isotope enrichment factors observed at Sites 1225 and 1226 ( values between 42 and 79) likely reflect concurrent processes of kinetic isotope fractionation, equilibrium fractionation between sulfate and water, and sulfide oxidation at low rates of sulfate reduction. The oxygen isotope ratio of dissolved pore water sulfate is a powerful tool for tracing microbial activity and sulfur cycling by the deep biosphere of deep-sea sediments

    Carbon mineralization and carbonate preservation in modern cold-water coral reef sediments on the Norwegian shelf

    Get PDF
    Cold-water coral ecosystems are considered hot-spots of biodiversity and biomass production and may be a regionally important contributor to carbonate production. The impact of these ecosystems on biogeochemical processes and carbonate preservation in associated sediments were studied at Røst Reef and Traenadjupet Reef, two modern (post-glacial) cold-water coral reefs on the Mid-Norwegian shelf. Sulfate and iron reduction as well as carbonate dissolution and precipitation were investigated by combining pore-water geochemical profiles, steady state modeling, as well as solid phase analyses and sulfate reduction rate measurements on gravity cores of up to 3.25 m length. Low extents of sulfate depletion and dissolved inorganic carbon (DIC) production, combined with sulfate reduction rates not exceeding 3 nmol S cm−3 d−1, suggested that overall anaerobic carbon mineralization in the sediments was low. These data showed that the coral fragment-bearing siliciclastic sediments were effectively decoupled from the productive pelagic ecosystem by the complex reef surface framework. Organic matter being mineralized by sulfate reduction was calculated to consist of 57% carbon bound in CH2O groups and 43% carbon in -CH2- groups. Methane concentrations were below 1 μM, and failed to support the hypothesis of a linkage between the distribution of cold-water coral reefs and the presence of hydrocarbon seepage. Reductive iron oxide dissolution linked to microbial sulfate reduction buffered the pore-water carbonate system and inhibited acid-driven coral skeleton dissolution. A large pool of reactive iron was available leading to the formation of iron sulfide minerals. Constant pore-water Ca2+, Mg2+ and Sr2+ concentrations in most cores and decreasing Ca2+ and Sr2+ concentrations with depth in core 23–18 GC indicated diagenetic carbonate precipitation. This was consistent with the excellent preservation of buried coral fragments
    corecore