43 research outputs found

    Oropharyngeal Hairy Polyp: A Case of Respiratory Failure in a Newborn

    Get PDF
    Hairy polyps, also known as dermoid polyps (DPs), are rare benign cystic lesions of bigerminal origin that may occur in several head and neck regions, including the oropharynx. Despite their benign histopathological nature, DPs may be life threatening, due to their upper airway location, and DPs represent one of the most unusual causes of respiratory distress during the neonatal period. In this paper, we describe a case of respiratory failure in a newborn with an oropharyngeal mass that was accidentally found during difficult intubation. Magnetic resonance imaging (MRI) detected a well-defined soft tissue pedunculated mass, arising from the left oropharynx wall, consistent with an oropharyngeal DP. The newborn had a prompt recovery after trans-oral mass removal. Our case underlines the importance of imaging in differential diagnosis of children's respiratory distress, secondary to a variety of lesions within the region of the skull base or oropharynx. It allowed us to assess the origin of the lesion, as well as its relationship with the adjacent soft tissues, and to exclude intracranial extension, thus providing essential information for the surgical planning

    Large paravertebral abscess in a child.

    Get PDF
    A 2-year-old male infant with a recent history of imbalance and ambulatorydeficits came to our attention after entering the primary care unit. The child presented with a marked loss of appetite and progressive weight loss during the last two weeks. Clinical examination showeddorsal gibbus and signs of uppermotor neuron lesion on lower limb examination. Conventional laboratory exams showed a mild leukocytosis and elevation of erythrocyte sedimentation rate andC-reactive protein levels.Anultrasound evaluationof the abdomen identified a large solid mass reported on the left suprarenalgland.X-rayexaminationof the spinewasperformedand revealed crushing of the 11 and 12 dorsal vertebrae with

    Usefulness of 18f-FDG PET-CT in Staging, Restaging, and Response Assessment in Pediatric Rhabdomyosarcoma

    Get PDF
    Rhabdomyosarcoma is the most common soft-tissue sarcoma of childhood. Despite clinical advances, subsets of these patients continue to suffer high morbidity and mortality rates associated with their disease. Following the European guidelines for 18F-FDG PET and PET-CT imaging in pediatric oncology, the routine use of 18F-FDG PET-CT may be useful for patients affected by rhabdomyosarcoma, in staging, in the evaluation of response to therapy, and for restaging/detection of relapse. The European Pediatric Protocols are very old, and for staging and restaging, they recommend only radionuclide bone scan. The 18F-FDG PET-CT exam is listed as an optional investigation prescribed according to local availability and local protocols in the investigations panel required at the end of the treatment. We present two cases highlighting the usefulness of 18F-FDG PET-CT in managing pediatric patients affected by rhabdomyosarcoma, providing some bibliographic references

    Neurochemical Correlates of Brain Atrophy in Fibromyalgia Syndrome: A Magnetic Resonance Spectroscopy and Cortical Thickness Study.

    Get PDF
    (1) Background: Recently, a series of clinical neuroimaging studies on fibromyalgia (FM) have shown a reduction in cortical volume and abnormally high glutamate (Glu) and glutamate + glutamine (Glx) levels in regions associated with pain modulation. However, it remains unclear whether the volumetric decreases and increased Glu levels in FM are related each other. We hypothesized that higher Glu levels are related to decreases in cortical thickness (CT) and volume in FM patients. (2) Methods: Twelve females with FM and 12 matched healthy controls participated in a session of combined 3.0 Tesla structural magnetic resonance imaging (MRI) and single-voxel MR spectroscopy focused on the thalami and ventrolateral prefrontal cortices (VLPFC). The thickness of the cortical and subcortical gray matter structures and the Glu/Cr and Glx/Cr ratios were estimated. Statistics included an independent t-test and Spearman's test. (3) Results: The Glu/Cr ratio of the left VLPFC was negatively related to the CT of the left inferior frontal gyrus (pars opercularis (p = 0.01; r = -0.75) and triangularis (p = 0.01; r = -0.70)). Moreover, the Glx/Cr ratio of the left VLPFC was negatively related to the CT of the left middle anterior cingulate gyrus (p = 0.003; r = -0.81). Significantly lower CTs in FM were detected in subparts of the cingulate gyrus on both sides and in the right inferior occipital gyrus (p < 0.001). (4) Conclusions: Our findings are in line with previous observations that high glutamate levels can be related, in a concentration-dependent manner, to the morphological atrophy described in FM patients

    Structural and functional brain networks of individual differences in trait anger and anger control: An unsupervised machine learning study.

    Get PDF
    The ability to experience, use and eventually control anger is crucial to maintain well-being and build healthy relationships. Despite its relevance, the neural mechanisms behind individual differences in experiencing and controlling anger are poorly understood. To elucidate these points, we employed an unsupervised machine learning approach based on independent component analysis to test the hypothesis that specific functional and structural networks are associated with individual differences in trait anger and anger control. Structural and functional resting state images of 71 subjects as well as their scores from the State-Trait Anger Expression Inventory entered the analyses. At a structural level, the concentration of grey matter in a network including ventromedial temporal areas, posterior cingulate, fusiform gyrus and cerebellum was associated with trait anger. The higher the concentration, the higher the proneness to experience anger in daily life due to the greater tendency to orient attention towards aversive events and interpret them with higher hostility. At a functional level, the activity of the default mode network (DMN) was associated with anger control. The higher the DMN temporal frequency, the stronger the exerted control over anger, thus extending previous evidence on the role of the DMN in regulating cognitive and emotional functions in the domain of anger. Taken together, these results show, for the first time, two specialized brain networks for encoding individual differences in trait anger and anger control

    Congenital cystic adenomatoid malformation of the lung associated with bronchial atresia involving a different lobe in an adult patient: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Congenital cystic adenomatoid malformation of the lung is an uncommon cause of respiratory distress in neonates and babies. The disorder is usually diagnosed in the neonatal period and the first two years of life. This anomaly has been described in association with bronchopulmonary sequestration, extralobar intra-abdominal sequestration or bronchial atresia in live and stillborn babies. It is rarely encountered in adults, in whom the diagnosis is made incidentally from mass lesion features seen on chest radiographs. The oldest patients recorded with this malformation have been about 35 years old, and only 10% of primary diagnoses are made after the first year of life. Delayed diagnosis can be related to infection or serendipitous discovery.</p> <p>Case presentation</p> <p>We describe the radiological findings of a 34-year-old Caucasian woman with a clinical history of recurrent pneumonia, intermittent anterior pleuritic chest pain and haemoptysis. Congenital cystic adenomatoid malformation of the lung associated with bronchial atresia involving a different lobe was discovered.</p> <p>Conclusion</p> <p>Although rare in adults, congenital cystic adenomatoid malformation should be suspected in adult patients who suffer from recurrent or persistent non-productive coughs. The discovery of an association of congenital cystic adenomatoid malformation with bronchial atresia in adulthood is rare but possible, even in different lobes.</p

    Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis

    Get PDF
    Upper limb impairments can occur in patients with multiple sclerosis, affecting daily living activities; however there is at present no definite agreement on the best rehabilitation treatment strategy to pursue. Moreover, motor training has been shown to induce changes in white matter architecture in healthy subjects.This study aimed at evaluating the motor behavioral and white matter microstructural changes following a 2-month upper limb motor rehabilitation treatment based on task-oriented exercises in patients with multiple sclerosis.Thirty patients (18 females and 12 males; age. = 43.3. ±. 8.7. years) in a stable phase of the disease presenting with mild or moderate upper limb sensorimotor deficits were randomized into two groups of 15 patients each. Both groups underwent twenty 1-hour treatment sessions, three times a week. The "treatment group" received an active motor rehabilitation treatment, based on voluntary exercises including task-oriented exercises, while the "control group" underwent passive mobilization of the shoulder, elbow, wrist and fingers.Before and after the rehabilitation protocols, motor performance was evaluated in all patients with standard tests. Additionally, finger motor performance accuracy was assessed by an engineered glove.In the same sessions, every patient underwent diffusion tensor imaging to obtain parametric maps of fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. The mean value of each parameter was separately calculated within regions of interest including the fiber bundles connecting brain areas involved in voluntary movement control: the corpus callosum, the corticospinal tracts and the superior longitudinal fasciculi.The two rehabilitation protocols induced similar effects on unimanual motor performance, but the bimanual coordination task revealed that the residual coordination abilities were maintained in the treated patients while they significantly worsened in the control group (p. = 0.002). Further, in the treatment group white matter integrity in the corpus callosum and corticospinal tracts was preserved while a microstructural integrity worsening was found in the control group (fractional anisotropy of the corpus callosum and corticospinal tracts: p. = 0.033 and p. = 0.022; radial diffusivity of the corpus callosum and corticospinal tracts: p. = 0.004 and p. = 0.008). Conversely, a significant increase of radial diffusivity was observed in the superior longitudinal fasciculi in both groups (p. = 0.02), indicating lack of treatment effects on this structure, showing damage progression likely due to a demyelination process.All these findings indicate the importance of administering, when possible, a rehabilitation treatment consisting of voluntary movements. We also demonstrated that the beneficial effects of a rehabilitation treatment are task-dependent and selective in their target; this becomes crucial towards the implementation of tailored rehabilitative approaches. © 2013 The Authors

    P495: UNLOCKING THE POTENTIAL OF SYNTHETIC PATIENTS FOR ACCELERATING CLINICAL TRIALS: RESULTS OF THE FIRST GIMEMA EXPERIENCE

    Get PDF
    Background: Artificial intelligence is contributing to improve different medicine areas including clinical trial design. One field that holds a great potential is represented by the use of digital data as an alternative to real ones. The generation of a virtual cohort of patients might be advantageous since an artificial group of patients resembles the real dataset in all the key features but it does not include any identifiable real-patient data, tackling - by a privacy standpoint – the “burden” of collecting data subjects’ consent as well as the shortcomings of common anonymization techniques. Aims: To test the feasibility of this approach and evaluate its potential in clinical trial design, we built an in-silico cohort based on the large dataset of patients enrolled in the GIMEMA AML1310 study (Venditti et al. 2019), which entailed a “3 + 7”-like induction and a risk-adapted, MRD-directed post-remission transplant allocation. Methods: To create the synthetic cohort of patients, a machine learning generative model was constructed from the real individual-level data of the AML1310 study, capturing its patterns and statistical properties. AML1310 enrolled 500 patients (median age 49 years old) in 55 GIMEMA Institutions. All patients were NCCN2009 risk classified and analyzed by morphology, cytogenetics, molecular biology and multiparametric flow cytometry. The subset of 445 patients with ELN2017 risk classification available was used. To this purpose, the R package “synthpop” was used considering a parametric method: for binary data the logistic regression, for a factor with &gt; 2 levels the polytomous logistic regression, for an ordered factor with &gt; 2 levels the ordered polytomous logistic regression. For time to event variables the classification and regression trees method was used. Next, we verified the adherence of the virtual cohort to the original one in terms of age, gender, PS, WBC count, FLT3 and NPM1 mutations, risk category, CR achievement, MRD, transplant rate. Virtual and real cohorts were also compared in terms of survival outcomes. Results: By using the real-patient dataset from the AML1310 trial, a virtual cohort of 850 patients, named synthAML1310, was generated. By comparing the two cohorts, we observed that the clinico-biological characteristics and response evaluations (CR and MRD rates) did not differ significantly. Moreover, as depicted in Figure 1, the curves of OS and DFS were superimposable. Indeed, at 2 years, OS was 57% (52.5%-61.9%) in the original and 59.1% (55.9%-62.6%) in the synthAML1310 cohort. DFS was 55.1% (49.8%-60.9%) in the original and 55.1% (51.3%-59.2%) in the synthetic cohort. Summary/Conclusion: These results demonstrate the success of this approach in producing a virtual dataset that perfectly mimics the original and that, from a “privacy by design” perspective, minimizes the risk of re-identification of patients. Mirroring an AML population treated with a conventional chemotherapeutic approach, synthAML1310 is suitable to represent the control group when testing novel innovative treatments, most likely in an in-silico randomized trial, but also in other settings like propensity score matching analyses in observational studies. Shifting to an in-silico trial would overcome the challenges of randomized trials and it would be beneficial also for patients. since, they would receive only the experimental treatment without being exposed to the “less active“ therapy, thus limiting treatment failures and toxicity. Also, enrolment and the attainment of final results would be faster

    BRAIN IRON ACCUMULATION: DON\u2019T FORGET ACERULOPLASMINEMIA

    No full text
    Aceruloplasminemia is a rare autosomal recessive disease, affecting iron metabolism, with typical onset in adulthood. It is brought about by mutations in the ceruloplasmin gene. Laboratory investigations reveal microcytic anemia, elevated serum ferritin, and a complete absence of serum ceruloplasmin ferroxidase activity.Clinical manifestations reflect the specific locations of neurodegeneration and iron deposition. Neuroradiological findings, characterized by symmetric \u201cblooming\u201d hypointense deposits on T2-weighted and T2*-weighted sequences in the basal ganglia, thalamus and cerebellum (especially dentate nucleus), are an exclusive feature of aceruloplasminemia. We report a case of a 52-year-old man who underwent MR exam to further characterize a diagnosis of AP which showed typical iron deposition and unusual T2 - weighted/FLAIR hypointensities in the subcortical white matter U fibers, suggesting that brain iron accumulation can be more extensive than previously believed

    Magnetic Resonance Imaging-Derived biomarkers of Isocitrate-Dehydrogenase mutation in diffuse gliomas: a conventional MR and Diffusion Weighted Imaging study.

    No full text
    The introduction of molecular criteria into the classification of diffuse gliomas has added interesting practical implications to glioma management. This has created a new clinical need for correlating imaging characteristics with glioma genotypes, also known as radiogenomics or imaging genomics. Whilst many studies have primarily focused on the use of advanced magnetic resonance imaging (MRI) techniques for radiogenomics purposes, conventional MRI sequences still remain the reference point in the study and characterization of brain tumours. Moreover, a different approach may rely on diffusion-weighted imaging (DWI) usage, which is considered a “conventional” sequence in line with recently published directions on glioma imaging. In a non-invasive way, it can provide direct insight into the microscopic physical properties of tissues. Considering that Isocitrate-Dehydrogenase gene mutations may reflect alterations in metabolism, cellularity, and angiogenesis, which may manifest characteristic features on an MRI, the identification of specific MRI biomarkers could be of great interest in managing patients with brain gliomas. My study aimed to evaluate the presence of specific MRI-derived biomarkers of IDH molecular status through conventional MRI and DWI sequences
    corecore